如何创造可信的AI

如何创造可信的AI pdf epub mobi txt 电子书 下载 2025

[美] 盖瑞·马库斯
图书标签:
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
第1章 AI该往何处走
真的有可信的AI吗
狭义 AI 与广义 AI
理想与现实之间的鸿沟
如何跨越 AI 鸿沟
第2章 当下AI的9个风险
机器人有暴力倾向吗
机器也会犯错
当下AI的9个风险
第3章 深度学习的好与坏
人工智能 > 机器学习 > 深度学习
什么是深度学习
深度学习的三个核心问题
深度学习是一个“美好”的悲剧
第4章 计算机若真有那么聪明,为什么还不会阅读
Talk to Books 无法回答一切问题
人是怎样阅读的
搜索引擎和语音虚拟助手的困惑
计算机不会阅读的三大原因
常识很重要
第5章 哪里有真正的机器人管家
从扫地机器人到机器人管家
机器人管家必备的四个能力
认知模型和深度理解才是关键
第6章 从认知科学中获得的 11 个启示
从认知科学中获得的 11 个启示
为机器赋予常识
第7章 常识,实现深度理解的关键
建立常识库的三种方法
知识表征
通用人工智能应具备的常识
推理能力
常识,深度理解的关键
第8章 创造可信的AI
优秀的工程实践
用深度理解取代深度学习
赋予机器道德价值观
重启 AI
后记
致谢
· · · · · · (收起)

具体描述

当下的AI存在哪些风险?真的有可信的AI吗?理想的AI与现实的AI之间究竟存在哪些差距?如何构建人类和AI之间的信任?

关于人工智能的炒作总是甚嚣尘上,但要得到真正可信的AI,却远比想象的要复杂得多,超级智能的时代还远没有到来。创造真正可信的AI需要赋予机器常识和深度理解,而不是简单地统计分析数据。本书勾勒了未来人工智能发展的最佳路线图,对当前人工智能的现状进行了清晰且客观的评估。

作者盖瑞·马库斯是人工智能领域的专家,同时还是心理学和神经科学教授,在计算机科学、认知科学、语言学、人工智能等领域都练就了相当深厚的学术功底,并敢于挑战学术界的主流观点。当整个人工智能学术界都在过分乐观地高歌猛进时,他不断撰文和发表演讲来指出以深度学习为代表的当下AI的弊端和局限性,《如何创造可信的AI》这本书正是马库斯对他关于人工智能观点的最佳总结。

盖瑞·马库斯和欧内斯特·戴维斯从深度学习算法固有的缺陷出发,阐述了当下AI技术发展的桎梏,对当前AI的场景应用和研究范式中的问题进行了分析,他指出AI真正的问题在于信任,常识才是深度理解的关键。最终从认知科学中提炼出了11条对人工智能发展方面的启示,以通用人工智能为发展目标,给出了未来AI技术的一种发展方向。

用户评价

评分

第一次出版后(好像是5月31日)10天第一时间读完一本书。非常推荐给所有人工智能从业者,非从业者读可能有些难度,尽管作者已经尽量科普。作者马库斯是认知科学和AI的先驱,是敢于硬刚Lecun等大佬的大侠,之前就已听说其名,遂中文版出来以后第一时间读完(有电子版)。翻译瑕不掩瑜。这是一本反思,他分析了为什么仅靠深度学习难以抵达推理和因果,为什么这些高级的智能因素如此重要,而业界现在实际上却几乎摸不着头脑,老实说非常符合我自己的思考。

评分

##警惕A.I. Hype

评分

##看了个寂寞 开头还行,感觉浅显易懂地让我这样的技术小白了解了深度学习的问题,感觉再跟公司技术同学对话容易很多。 后面磨磨唧唧不知道要说啥,需要找人推荐这方面的好书

评分

##水也不水

评分

##去年读吴军的《智能社会》一书后,很兴奋,但现在读完这本书后,再回想吴军的那本书,就是科普的宣传品。而这本书确实一剂清醒剂,AI还是起步阶段,缺乏抽象、推理、常识能力的AI只是狭窄范围特定项目上的计算应用。真正的AI社会路还很长。

评分

##喜马拉雅

评分

##在是个研究生就搞AI的“泡沫”时期,是时候审视基于深度学习的人工智能的鲁班性了。如何编码常识?如何构建推理引擎?

评分

##看过《未来简史》之后,看看这本书解毒。人工智能之路充满期望,有识之士能在早期就开始探讨安全的,可信的AI让我对未来更有信心。

评分

##在是个研究生就搞AI的“泡沫”时期,是时候审视基于深度学习的人工智能的鲁班性了。如何编码常识?如何构建推理引擎?

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有