內容簡介
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
內頁插圖
目錄
Preface
Part I-Algebraic Methods
ChapterI Finite fields
1-Generalities
2-Equations over a finite field
3-Quadratic reciprocity law
Appendix-Another proof of the quadratic reciprocity law
Chapter II p-adic fields
1-The ring Zp and the field
2-p-adic equations
3-The multiplicative group of
Chapter II nHilbert symbol
1-Local properties
2-Global properties
Chapter IV Quadratic forms over Qp and over Q
1-Quadratic forms
2-Quadratic forms over Q
3-Quadratic forms over Q
Appendix Sums of three squares
Chapter V Integral quadratic forms with discriminant
1-Preliminaries
2-Statement of results
3-Proofs
Part II-Analytic Methods
Chapter VI-The theorem on arithmetic progressions
1-Characters of finite abelian groups
2-Dirichlet series
3-Zeta function and L functions
4-Density and Dirichlet theorem
Chapter Vll-Modular forms
1-The modular group
2-Modular functions
3-The space of modular forms
4-Expansions at infinity
5-Hecke operators
6-Theta functions
Bibliography
Index of Definitions
Index of Notations
前言/序言
This book is divided into two parts.
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
The two parts correspond to lectures given in 1962 and 1964 to secondyear students at the Ecole Normale Superieure. A redaction of these lecturesin the form of duplicated notes, was made by J.-J. Saosuc (Chapters l-IV)and J.-P. Ramis and G. Ruget (Chapters VI-VIi). They were very useful tome; I extend here my gratitude to their authors.
算術教程(英文版) [A Course in Arithmetic] epub pdf mobi txt 電子書 下載 2025
算術教程(英文版) [A Course in Arithmetic] 下載 epub mobi pdf txt 電子書
評分
☆☆☆☆☆
前兩個是加法和乘法的交換律,它說明人們可以交換加法或乘法中元素的次序。第三個是加法的結閤律,它錶明三個數相加時,或者我們把第一個加上第二個與第三個的和;或者我們把第三個加上第一個與第二個的和,其結果都相同。第四個是乘法的結閤律。最後一個是分配律,它錶明用一個整數去乘一個和時,我們可以用這整數去乘這和的每一項,然後把這些乘積加起來。
評分
☆☆☆☆☆
拉丁文的“算術”這個詞是由希臘文的“數和數(音屬,shû三音)數的技術”變化而來的。“算”字在中國的古意也是“數”的意思,錶示計算用的竹籌。中國古代的復雜數字計算都要用算籌。所以“算術”包含當時的全部數學知識與計算技能,流傳下來的最古老的《九章算術》以及失傳的許商《算術》和杜忠《算術》,就是討論各種實際的數學問題的求解方法。
評分
☆☆☆☆☆
短小精悍,名傢經典。
評分
☆☆☆☆☆
讀者對象:數學專業的高年級本科生、研究生和相關專業的學者本書主要講述具有一般係數體係拓撲空間的上同調理論。層論包括對代數拓撲很重要的領域。書中有好多創新點,引進不少新概念,全書內容貫穿一緻。證實瞭廣義同調空間中層理論上同調滿足同調基本特性的事實。將相對上同調引入層理論中。
評分
☆☆☆☆☆
算術教程(英文版),很不錯的好書,和期待。
評分
☆☆☆☆☆
算術算術是數學中最古老、最基礎和最初等的部分。它研究數的性質及其運算。把數和數的性質、數和數之間的四則運算在應用過程中的經驗纍積起來,並加以整理,就形成瞭最古老的一門數學——算術。在古代全部數學就叫做算術,現代的代數學、數論等最初就是由算術發展起來的。後來,算學、數學的概念齣現瞭,它代替瞭算術的含義,包括瞭全部數學,算術就變成瞭一個分支瞭。算術(arithmetic) 數學的一個基礎分支。它以自然數和非負分數為主要對象。算術的內容包括兩部分,一部分討論自然數的讀法、寫法和它的基本運算,這一部分包括進位製和記數法,主要是十進位製,其他的 進位製與十進位製僅是采用的基數不同,都可以仿照十進位數的原理和原則進行計算,算術的另一部分包括算術運算的方法與原理的應用。如分數與百分數計算,各種量及其計算,比和比例,以及算術應用題。
評分
☆☆☆☆☆
讀者有一定的基本同調代數和代數拓撲知識就可以理解本書。每章末都附有練習,這些可以幫助學生更好的理解書中的知識體係。附錄給齣瞭部分習題的解答。第二版中在內容上做瞭較大的改動,增加瞭80多例子和大量更深層次的內容,如,Cech上同調、Oliver變換、插值理論、廣義流形、局部齊性空間、同調縴維和p進變換群。目次:層和準層;層上同調;與其他上同調定理的比較;譜序列的應用;Borel-Moore同調;上層和ech同調。
評分
☆☆☆☆☆
好難啊看不懂
評分
☆☆☆☆☆
讀者對象:數學專業的高年級本科生、研究生和相關專業的學者本書主要講述具有一般係數體係拓撲空間的上同調理論。層論包括對代數拓撲很重要的領域。書中有好多創新點,引進不少新概念,全書內容貫穿一緻。證實瞭廣義同調空間中層理論上同調滿足同調基本特性的事實。將相對上同調引入層理論中。