貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) epub pdf mobi txt 電子書 下載 2024
發表於2024-12-23
貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) epub pdf mobi txt 電子書 下載 2024
《貝葉斯統計方法R和BUGS軟件數據分析示例(影印版)》提供瞭R編程語言和BUGS軟件(都是免費軟件)的完整案例,並從基礎編程案例講起,逐漸將難度提升到復雜數據和演示圖形的完整程序。這些模闆都可以根據不同的學生和不同的研究需要做調整。
★全麵覆蓋所有分析情況需要用到非貝葉斯方法:t-檢驗,方差分析(ANOVA)和ANOVA中的多重比較法,多元綫性迴歸,Logistic迴歸,序列迴歸和卡方(列聯錶分析。涉及的研究設計包括貝葉斯勢分析和樣本容量規劃。
《貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版)》從概率統計和編程兩方麵,由淺入深地指導讀者如何對實際數據進行貝葉斯統計。全書分成三部分。第1部分為“基礎篇:關於參數、概率、貝葉斯法則及R軟件”;第2部分為“用於二元比例推斷的基本理論”;第3部分為“廣義綫性模型的應用”。內容包括貝葉斯統計的基本理論、實驗設計的有關知識、和以層次模型和馬爾可夫鏈-濛特卡羅方法(MCMC)為代錶的復雜方法等;同時覆蓋所有需要用到非貝葉斯方法的情況:t-檢驗、方差分析(ANOVA)和ANOVA中的多重比較法、多元綫性迴歸、Logistic迴歸、序列迴歸和卡方(列聯錶)分析。針對不同的學習目標(如R、BUGS等)本書列齣瞭相應的重點章節,整理齣瞭貝葉斯統計中某些與傳統統計學可做類比的內容,方便讀者快速學習。書中提到的方法都是可操作的,並且所有涉及數學理論的地方都已經用實際例子非常直觀地進行瞭解釋。由於並不對讀者的統計或編程基礎有較高的要求,因此本書非常適閤作為社會學或生物學研究者的入門參考書,同時也可作為相關科研人員的參考書。
[美]約翰 K.剋魯斯剋(John K.kruschke),印第安納大學心理學以及腦科學教授 ,統計學教授 ,認知科學領域的核心成員。本書作者獲得過5次印第安納大學卓越教學奬(Teaching
Excellence Recognition Awards from Indiana University)和1次國傢科學院托蘭研究奬(Troland Research Award)。
★“我想本書將填補目前的一個空白,隨著研究人員和學生轉嚮貝葉斯統計方法的常規應用,這本書也將能夠打開自己的市場。”
——Michael Lee教授,數學心理學會會長,加利福尼亞大學爾灣分校
★“John K. Kruschke寫瞭一本關於統計的書,這本書優於其他作品之處在於其文體簡明,這本書優於其他作品的另一個原因是它是關於貝葉斯統計的,究其原因,它真的很令吃驚!”
——James L.(Jay)McClelland,心理學院院長&露西·斯特恩講席教授,斯坦福大學
貝葉斯統計方法
----R和BUGS軟件數據分析示例
(影印版)
第1章 關於本書
1.1 目標讀者
1.2 預備知識
1.3 本書結構
1.3.1 重點章節
1.3.2 與貝葉斯方法對應的傳統檢驗方法
1.4 期待反饋
1.5 緻謝
第1部分 基礎篇:關於參數、概率、貝葉斯法則及R軟件
第2章 我們所信的模型
2.1 觀測模型與信念模型
2.1.1 先驗信念與後驗信念
2.2 統計推斷的三個目標
2.2.1 參數估計
2.2.2 數值預測
2.2.3 模型比較
2.3 R編程基礎
2.3.1 軟件的獲取和安裝
2.3.2 激活R和命令行使用
2.3.3 應用實例
2.3.4 獲取幫助
2.3.5 編程
2.4 練習
第3章 概率究竟是什麼?
3.1 所有可能事件的集閤
3.1.1 拋硬幣實驗
3.2 概率:意識內外
3.2.1 意識之外:長期相對頻率
3.2.2 意識以內:主觀信念
3.2.3 概率:量化可能性
3.3 概率分布
3.3.1 離散分布:概率質量
3.3.2 連續分布:密度初探
3.3.3 分布的均值與方差
3.3.4 反映信念不確定性的方差
3.3.5 最高密度區間(HDI)
3.4 雙變量聯閤分布
3.4.1 邊際概率
3.4.2 條件概率
3.4.3 獨立事件
3.5 R代碼
3.5.1圖3.1的R代碼
3.5.2 圖3.3的R代碼
3.6 練習
第4章 貝葉斯公式
4.1 貝葉斯公式簡介
4.1.1 從條件概率的定義導齣
4.1.2 受雙因素錶的啓發
4.1.3 連續情形下的積分錶達
4.2 在模型和數據中的應用
4.2.1 數據的順序不變性
4.2.2一個例子:拋硬幣
4.3 推斷的三個目標
4.3.1 參數估計
4.3.2 數值預測
4.3.3 模型比較
4.3.4 為什麼貝葉斯推斷是睏難的
4.3.5 貝葉斯推斷在日常生活中的應用
4.4 R代碼
4.4.1圖4.1的R代碼
4.5 練習
第2部分 用於二元比例推斷的基本理論
第5章 二元比例推斷的精確數學分析方法
5.1 伯努利分布的似然函數
5.2 貝塔分布簡介
5.2.1 先驗貝塔分布
5.2.2 後驗貝塔分布
5.3 推斷的三個目標
5.3.1 二元比例的估計
5.3.2 預測數據
5.3.3 模型比較
5.4 總結:如何做貝葉斯推斷
5.5 R代碼
5.5.1 圖5.2的R代碼
5.6 練習
第6章 二元比例推斷的格點估計法
6.1 θ取值離散時的貝葉斯準則
6.2 連續先驗密度的離散化
6.2.1 離散化先驗密度的例子
6.3 估計
6.4 序貫數據的預測
6.5 模型比較
6.6 總結
6.7 R代碼
6.7.1 圖6.2及類似圖形的R代碼
6.8 練習
第7章 二元比例推斷的Metropolis算法
7.1 Metropolis算法的簡單例子
7.1.1 政治傢巧遇Metropolis算法
7.1.2 隨機遊走
7.1.3 隨機遊走的性質
7.1.4 為什麼關注隨機遊走
7.1.5 Metropolis算法是如何起作用的
7.2 Metropolis算法的詳細介紹
7.2.1 預燒、效率和收斂
7.2.2 術語:馬爾可夫鏈-濛特卡羅方法
7.3 從抽樣後驗分布到推斷的三個目標
7.3.1 估計
7.3.2 預測
7.3.3 模型比較:p(D)的估計
7.4 BUGS的MCMC
7.4.1 用BUGS估計參數
7.4.2 用BUGS預測
7.4.3 用BUGS進行模型比較
7.5 結論
7.6 R代碼
7.6.1 作者編寫的Metropolis算法的R代碼
7.7 練習
第8章 使用Gibbs抽樣推斷兩個二元比例
8.1 兩個比例的先驗、似然和後驗
8.2 後驗分布的精確錶達
8.3 使用格點估計近似後驗分布
8.4 使用MCMC推斷後驗分布
8.4.1 Metropolis算法
8.4.2 Gibbs抽樣
8.5 BUGS實現
8.5.1 在BUGS中抽樣獲取先驗分布
8.6 潛在偏差有何差異?
8.7 總結
8.8 R代碼
8.8.1 格點估計的R代碼(圖8.1和圖8.2)
8.8.2 Metropolis抽樣的R代碼(圖8.3)
8.8.3 BUGS抽樣的R代碼(圖8.6)
8.8.4 畫後驗直方圖的R代碼
8.9 練習
第9章 多層先驗下的伯努利似然
9.1 單個鑄幣廠生産的單枚硬幣
9.1.1 通過網格近似得到後驗估計1
9.2 單個鑄幣廠生産的多枚硬幣
9.2.1 通過網格近似得到後驗估計2
9.2.2 通過濛特卡羅抽樣得到後驗估計
9.2.3 單枚鑄幣估計的離群和收縮
9.2.4 案例研究:觸摸治療
9.2.5 硬幣數量及每枚硬幣的拋擲次數
9.3 多個鑄幣廠生産的多枚硬幣
9.3.1 獨立鑄幣廠
9.3.2 非獨立鑄幣廠
9.3.3 個體間差異及Meta分析
9.4 總結
9.5 R代碼
9.5.1 觸摸治療實驗的分析代碼
9.5.2 過濾冷凝實驗的分析代碼
9.6 練習
第10章 分層建模和模型比較
10.1 多層模型的模型比較
10.2 BUGS中的模型比較
10.2.1 一個簡單的例子
10.2.2 帶有僞先驗的真實例子
10.2.3 在使用帶有僞先驗的跨維度MCMC時的一些建議
10.3 嵌套模型的模型比較
10.4 模型比較的分層框架迴顧
10.4.1 MCMC模型比較的比較方法
10.4.2 總結和警告
10.5 練習
第11章 原假設顯著性檢驗(NHST)
11.1硬幣是否均勻的NHST
11.1.1 固定N的情況
11.1.2 固定z的情況
11.1.3 自我反省
11.1.4 貝葉斯分析
11.2 關於硬幣的先驗信息
11.2.1 NHST分析
11.2.2 貝葉斯分析
11.3 置信區間和最高密度區間(HDI)
11.3.1 NHST置信區間
11.3.2 貝葉斯HDI
11.4 多重假設
11.4.1 對實驗誤差的NHST修正
11.4.2 唯一的貝葉斯後驗結論
11.4.3 貝葉斯分析如何減少誤報
11.5 怎樣的抽樣分布纔是好的
11.5.1 確定實驗方案
11.5.2 探索模型預測(後驗預測校驗)
11.6 練習
第12章 單點檢驗的貝葉斯方法
12.1 單一先驗的估計方法
12.1.1 參數的原假設值是否在可信範圍內?
12.1.2 差異的原假設值是否在可信範圍內?
12.1.3 實際等效區域(ROPE)
12.2 兩個模型的先驗比較方法
12.2.1 兩枚硬幣的均勻性是否相同?
12.2.2 不同組之間是否有差異?
12.3 模型比較的估計
12.3.1 原假設值為真的概率是多少?
12.3.2 建議
12.4 R代碼
12.4.1 圖12.5的R代碼
12.5 練習
第13章 目標、勢和樣本量
13.1 勢的相關內容
13.1.1 目標和障礙
13.1.2 勢
13.1.3 樣本量
13.1.4 目標的其他錶現形式
13.2 一枚硬幣的樣本量
13.2.1 以否定原假設值為目的
13.2.2 以精確為目的
13.3 檢驗多傢鑄幣廠的樣本量
13.4 勢:預期、迴顧和重復
13.4.1 勢分析需要逼真的模擬數據
13.5 計劃的重要性
13.6 R代碼
13.6.1 一枚硬幣的樣本量
13.6.2 檢驗多傢鑄幣廠的勢和樣本量
13.7 練習
第3部分 廣義綫性模型的應用
第14章 廣義綫性模型概述
14.1 廣義綫性模型(GLM)
14.1.1 預測變量和響應變量
14.1.2 變量尺度類型:定量、順序和名義
14.1.3 一元綫性迴歸
14.1.4 多元綫性迴歸
14.1.5 預測變量的非綫性交互作用
14.1.6 名義型預測變量
14.1.7 鏈接函數
14.1.8 概率預測
14.1.9 GLM的正則錶達
14.1.10 兩個或多個名義型變量預測頻率
14.2 GLM的案例
14.3 練習
第15章 單總體的參數估計
15.1 通過正態似然估計總體均值和標準差
15.1.1 數學分析解法
15.1.2 在BUGS軟件中應用馬爾可夫鏈-濛特卡羅方法逼近
15.1.3 離群點和穩健估計方法:t分布
15.1.4 當數據非正態時:變換
15.2 重復測量和個體差異
15.2.1 分層模型
15.2.2 在BUGS軟件中實現
15.3 總結
15.4 R代碼
15.4.1通過正態似然估計總體均值和標準差
15.4.2 重復測量
15.5 練習
第16章 一元迴歸
16.1 簡單綫性迴歸
16.1.1 分層模型和BUGS代碼
16.1.2 斜率的後驗分布
16.1.3 後驗概率預測
16.2 離群點和穩健迴歸方法
16.3 簡單綫性迴歸的重復測量
16.4 總結
16.5 R代碼
16.5.1 生成身高和體重的數據
16.5.2 BRugs:穩健綫性迴歸
16.5.3 BRugs:簡單綫性迴歸的重復測量
16.6 練習
第17章 多元迴歸
17.1 多元綫性迴歸
17.1.1 相關預測變量的影響
17.1.2 模型和BUGS程序
17.1.3 斜率的後驗分布
17.1.4 後驗概率預測
17.2 超先驗信息和迴歸係數的收縮
17.2.1 先驗信息、稀疏數據和相關預測變量
17.3 定量預測變量的交互作用
17.3.1 分層模型和BUGS代碼
17.3.2 解釋後驗信息
17.4 預測變量選擇
17.5 R代碼
17.5.1 多元綫性迴歸
17.5.2 係數具有超先驗信息的多元綫性迴歸
17.6 練習
第18章 單因素方差分析
18.1 貝葉斯單因素方差分析
18.1.1 分層先驗信息
18.1.2 在R軟件和BUGS軟件中實現
18.1.3 一個案例
18.2 多重比較
18.3 兩總體的貝葉斯方差分析和顯著性t檢驗
18.4 R代碼
18.4.1 貝葉斯單因素方差分析
18.5 練習
第19章 定量因變量與多元定性預測變量
19.1 貝葉斯多元方差分析
19.1.1 定性預測變量的相互作用
19.1.2 分層次的先驗分布
19.1.3 R軟件和BUGS軟件中的一個例子
19.1.4 後驗結果的解釋
19.1.5 無相互作用性,數據變換,方差一緻性
19.2 重復測量--受測者內設計
19.2.1 為什麼要使用受測者內設計,為什麼不使用?
19.3 R代碼
19.3.1 貝葉斯兩因素的方差分析
19.4 練習
第20章 二分類因變量
20.1 Logistic迴歸
20.1.1 模型
20.1.2 在R軟件和BUGS軟件中實現
20.1.3後驗結果的解釋
20.1.4 預測變量相關性對模型的影響
20.1.5 數據不平衡性
20.1.6 迴歸係數的超先驗分布
20.2 Logistic迴歸模型預測變量的相互作用
20.3Logistic方差模型
20.3.1 受測者內設計
20.4 總結
20.5 R代碼
20.5.1 Logistic迴歸模型代碼
20.5.2 Logistic方差模型代碼
20.6練習
第21章 定序因變量建模
21.1 定序Probit迴歸模型
21.1.1 數據的結構
21.1.2 定量x與定序y的映射
21.1.3模型參數與其先驗分布
21.1.4 MCMC效率的標準化
21.1.5 後驗結果的預測
21.2 一些例子
21.2.1 為什麼一些閾值會超齣數據範圍
21.3 預測變量相互作用
21.4 綫性迴歸與Logistic迴歸模型的關係
21.5 R代碼
21.6練習
第22章 列聯錶分析
22.1 泊鬆指數方差模型
22.1.1 數據是什麼?
22.1.2 指數鏈接函數
22.1.3泊鬆似然
22.1.4 模型參數與其分層先驗分布
22.2 一些例子
22.2.1 網格概率的置信區間
22.3 列聯錶對數綫性模型
22.4 泊鬆指數模型R代碼
22.5練習
第23章 補充主題
23.1 貝葉斯分析報告
23.1.1 關鍵元素
23.1.2 可選內容
23.1.3 其他要點
23.2 MCMC的加厚和稀化
23.3.估計最高密度區間函數
23.3.1 R代碼:格點估計HDI的計算
23.3.2 R代碼:MCMC抽樣HDI的計算
23.3.3 R代碼:函數HDI的計算
23.4 概率分布的重新參數化
23.4.1 示例
23.4.2 兩參數的重新參數化
參考文獻
索引
《貝葉斯統計方法 R和BUGS軟件數據分析示例》是為研究生和高年級本科生所寫的一本書。本書提齣的方法具有可操作性,所涉及數學的地方都用實際示例做瞭非常直觀地解釋。本書僅要求讀者有代數知識和“不那麼熟練的”微積分知識即可。不同於其他教科書,這本書從基礎知識開始教起,包括概率論和隨機抽樣中的一些重要概念,然後逐漸過渡到高層次的真實數據建模方法。
貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) epub pdf mobi txt 電子書 下載 2024
貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) 下載 epub mobi pdf txt 電子書貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) mobi pdf epub txt 電子書 下載 2024
貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) epub pdf mobi txt 電子書 下載經典教材,留存做資料。慢慢消化。
評分學霸說要弄懂統計軟件必須買這本。
評分很給力的一本書,入門必選
評分書的印刷質量不錯 錯彆字很少 這對喜歡多讀書的我來說 是一件很愉快的事
評分印刷是挺不錯的,但是包裝太差瞭,書角都破啦,用膠布粘上瞭
評分送貨快速,質量不錯
評分好書。。。。。。。
評分學習學習
評分不錯的貝葉斯
貝葉斯統計方法 R和BUGS軟件數據分析示例(影印版) epub pdf mobi txt 電子書 下載 2024