编辑推荐
本系列丛书搜集的是世界各国各历史时期的初等数学经典。大多兼有数学教育史史料研究及弥补当前初等数学教材不系统、缺深度、少背景介绍等缺陷之功能。
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。是一本专讲方程具体解法的书。
内容简介
《方程式论》是已故英国群论大师伯恩赛德和班登的一本代数学经典著作。书中详细地介绍了代数方程的各种解法及根的各种性质。对了解代数方程的历史也是很好的素材。
《方程式论》适合大中师生及数学爱好者阅读及收藏。
作者简介
伯恩赛德,英国著名数学家,1852年7月2日出生于伦敦。开始在剑桥工作,1885年后在格林威治海洋学院任教授,他是伦敦皇家学会会员,1927年8月21日逝世。
伯恩赛德在群论方面作出了贡献。他撰写了一系列关于群的概念、群表示论和群的特征标理论的论文,他指出了有限群是非单群的判定准则。、他的《有限群理论》(1897)一书是这一领域最优秀的著作之一,至今还有很大影响。他曾提出过许多问题和猜想。1902年他提出了如果一个群是有限生成且每个元素都是有限阶,该群是否为有限群的问题;1906年猜想每一个非交换的单群是偶数阶的。前者至今尚未解决,后者于1963年由费特(1930~)与汤普森共同解决。此外,他还写过一些有关概率论、自守函数、二重积分计算和液态波状理论方面的著作。他对数学物理问题,尤其是电磁理论问题,也作过研究。
目录
绪论
§1 定义
§2 数字方程式及代数方程式
§3 多项式
第一章 多项式之普通性质
§4 定理(多项式变数之值甚大时)
§5 定理(多项式变数之值甚小时)
§6 变数增减时多项式形式上之变化及导函数
§7 有理整函数之连续
§8 以二项式除多项式所得之商及其剩余
§9 作函数表法
§10 多项式之图表法
§11 多项式之极大值极小值
第二章 方程式之普通性质
§12 定理一(关于方程式之实根)
§13 定理二(关于方程式之实根)
§14 定理三(关于方程式之实根)
§15 普通方程式之根,虚根
§16 定理(定方程式中根之数目)
§17 等根
§18 系数为实数之方程式
§19 Descartes之符号规则,正根
§20 Descartes之符号规则,负根
§21 用Descartes规则证明虚根之存在
§22 定理(以二已知数之代变数)
第三章 根与系数之关系及根之对称函数
§23 根与系数之关系
§24 应用
§25 方程式相关二根之降次
§26 1之立方根
§27 根之对称函数
§28 对称函数之理论
第四章 方程式之变化
§29 方程式之变化
§30 变根之符号
§31 以一定量乘方程式之根
§32 逆根及逆方程式
§33 增减方程式之根
§34 消项
§35 二项系数
§36 三次方程式
§37 四次方程式
§38 同比异列变化
§39 对称函数之变化
§40 变换方程式以其根之乘幂
§41 一般之变化
§42 平方差之三次方程式
§43 三次方程式中根之性质之标准
§44 差之一般方程式
第五章 逆方程式及二项方程式之解答
§45 逆方程式
§46 二项方程式之普通性质,命题1
§47 命题2
§48 命题3
§49 命题4
§50 命题5
§51 命题6
§52 命题7
§53 方程式xn-1=0之特根
§54 以圆函数解二项方程式
第六章 三次方程式及四次方程式之代数解法
§55 方程式之代数解法
§56 三次方程式之代数根
§57 数字方程式之应用
§58 化三次式为两立方之差
§59 以根之对称函数解三次方程式
§60 三次方程式中二根之同比异列关系
§61 四次方程式之第一解法,Euler氏之假定
§62 四次方程式之第二种解法
§63 分解四次式为二次因子--第一法
§64 分解四次式为二次因子--第二法
§65 四次方程式之逆方程式
§66 以根之对称函数解四次方程式
§67 四次方程式之平方差方程式
§68 四次方程式中根之性质之准则
第七章 导函数之性质
§69 导函数之图表法
§70 多项式之极大极小值,定理
§71 Rolle氏之定理
§72 导函数之组织
§73 复根,定理
§74 复根之决定
§75 定理一(变数经过方程式之一根)
§76 定理二{变数经过方程式之一根)
第八章 根之对称函数
§77 牛顿之定理,命题1
§78 命题2
§79 命题3
§80 以根之乘方和之项表系数之式
§81 对称函数之级数及其次数和
§82 根之对称函数之计算
§83 同次积
第九章 根之极限
§84 极限之定义
§85 命题1
§86 命题2
§87 应用
§88 命题3
§89 下限及负根之极限
§90 限制方程式
第十章 区分方程式之根
§91 一般解释
§92 Fourier及Budan之定理
§93 定理之应用
§94 根为虚数时定理之应用
§95 前定理之推论
§96 Sturm之定理
§97 Sturm之定理,等根
§98 Sturm定理之应用
§99 方程式之根皆为实根之条件
§100 四次方程式之根皆为实数之条件
第十一章 数字方程式之解答
§101 代数方程式及数字方程式
§102 定理(关于可通约根)
§103 牛顿之约数法则
§104 约数法则之应用
§105 限制约数数目之方法
§106 复根之决定
§107 牛顿之近似值方法
§108 Homer氏之数字方程式解法
§109 试约数之原理
§110 Homer氏之简法
§111 方程式之根异常接近时Homer氏法则之应用
§112 Lagrange氏之近似值方法
§113 四次方程式之数字解答
第十二章 复数及复变数
§114 复数,图表法
§115 复数,加法及减法
§116 乘法及除法
§117 复数之他种运算
§118 复变数
§119 复变数函数之连续
§120 复变数画一小闭曲线时f(x)中幅角之相当变化
§121 Cauehy氏之定理
§122 普通方程式中根之数目
§123 基本定理之第二证法
§124 复数根之决定,三次方程式之解答
§125 四次方程式之解法
§126 续四次方程式之解法
编辑手记
前言/序言
方程式论 epub pdf mobi txt 电子书 下载 2024
方程式论 下载 epub mobi pdf txt 电子书 2024
评分
☆☆☆☆☆
编辑本段示例这个定理可以通过很实际的例子来理解。比如:取两张一样大小的白纸,在上面画好垂直的坐标系以及纵横的方格。将一张纸平铺在桌面,而另外一张随意揉成一个形状(但不能撕裂),放在第一张白纸之上,不超出第一张的边界。那么第二张纸上一定有一点正好就在第一张纸的对应点的正上方。一个更简单的说法是:将一张白纸平铺在桌面上,再将它揉成一团(不撕裂),放在原来白纸所在的地方,那么只要它不超出原来白纸平铺时的边界,那么白纸上一定有一点在水平方向上没有移动过。
评分
☆☆☆☆☆
数学分析(A)-2
评分
☆☆☆☆☆
包罗专项,学有所长。
评分
☆☆☆☆☆
7,连续映射、连续映射与同胚、Peano曲线、Tietze扩张定理、拓扑空间的紧致性、Heine-Borel定理、紧致空间的性质、Bolzano-Weierstrass性质、Lebesgue引理、局部紧空间、Lindelof定理。
评分
☆☆☆☆☆
书的质量很好,货物到达的速度很快!谢谢咯!给力给力 性价比很高 工作之余,人们或楚河汉界运筹帷幄,或轻歌曼舞享受生活,而我则喜欢翻翻书、读读报,一个人沉浸在笔墨飘香的世界里,跟智者神游,与慧者交流,不知有汉,无论魏晋,醉在其中。我是一介穷书生,尽管在学校工作了二十五年,但是工资却不好意思示人。当我教训调皮捣蛋的女儿外孙子们时,时常被他们反问:“你老深更半夜了,还在写作看书,可工资却不到两千!”常常被他们噎得无话可说。当教师的我这一生注定与清贫相伴,惟一好处是有双休息日,在属于我的假期里悠哉游哉于书香之中,这也许是许多书外之人难以领略的惬意。好了,废话不多说。好了,我现在来说说这本书的观感吧,网络文学融入主流文学之难,在于文学批评家的缺席,在于衡量标准的混乱,很长一段时间,文学批评家对网络文学集体失语,直到最近一两年来,诸多活跃于文学批评领域的评论家,才开始着手建立网络文学的评价体系,很难得的是,他们迅速掌握了网络文学的魅力内核,并对网络文学给予了高度评价、寄予了很深的厚望。随着网络文学理论体系的建立,以及网络文学在创作水准上的不断提高,网络文学成为主流文学中的主流已是清晰可见的事情,下一届的“五个一工程奖”,我们期待看到更多网络文学作品的入选。废话不多说 同时买了三本推拿的书和这本,比认为这本是最好的!而且是最先收到的!好评必须的,书是替别人买的,货刚收到,和网上描述的一样,适合众多人群,快递也较满意。书的质量很好,内容更好!收到后看了约十几页没发现错别字,纸质也不错。应该是正版书籍,谢谢现在,京东域名正式更换为JDCOM。其中的“JD”是京东汉语拼音(JING DON|G)首字母组合。从此,您不用再特意记忆京东的域名,也无需先搜索再点击,只要在浏览器输入JD.COM,即可方便快捷地访问京东,实现轻松购物。名为“Joy”的京东吉祥物我很喜欢,TA承载着京东对我们的承诺和努力。狗以对主人忠诚而著称,同时也拥有正直的品行,和快捷的奔跑速度。太喜爱京东了。|给大家介绍本好书《我们如何走到这一步》自序:这些年,你过得怎么样我曾经想过,如果能时光穿梭,遇见从前的自己,是否可以和她做朋友。但我审慎地不敢发表意见。因为从前的自己是多么无知,这件事是很清楚的。就算怀着再复杂的爱去回望,没准儿也能气个半死,看着她在那条傻乎乎的路上跌跌撞撞前行,忍不住开口相劝,搞不好还会被她厌弃。你看天下的事情往往都是一厢情愿。当然我也忍住了各种吐槽,人总是要给自己留余地的,因为还有一种可能是,未来的自己回望现在,看见的还是一个人。好在现在不敢轻易放狠话了,所以总算显得比年轻的时候还有一分从容。但不管什么时候的你,都是你。这时间轴上反复上演的就是打怪兽的过程。过去困扰你的事情,现在已可轻易解决,但往往还有更大的boss在前面等你。“人怎么可能没有烦恼呢”——无论是你初中毕业的那个午后,或者多年后功成名就那一天,总有不同忧伤涌上心头:有些烦恼是钱可以解决的,而更伤悲的是有些烦恼是钱解决不了的。我们曾经在年少时想象的“等到什么什么的时候就一切都好起来了”根本就是个谬论。所以,只能咬着牙继续朝前走吧
评分
☆☆☆☆☆
12,原函数与不定积分、原函数的计算方法、椭圆积分。
评分
☆☆☆☆☆
定理的一些等价形式
评分
☆☆☆☆☆
6,函数连续性的定义、间断点、连续函数的性质、中间值定理、最大值定理、一致连续、Cantor-Heine定理、单调函数与反函数的连续性。
评分
☆☆☆☆☆
4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。