神經網絡與機器學習(原書第3版)

神經網絡與機器學習(原書第3版) pdf epub mobi txt 電子書 下載 2025

[加] Simon Haykin 申富饒
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
2011-3 平裝 9787111324133

具體描述

Simon Haykin 於1953年獲得英國伯明翰大學博士學位,目前為加拿大McMaster大學電子與計算機工程係教授、通信研究實驗室主任。他是國際電子電氣工程界的著名學者,曾獲得IEEE McNaughton金奬。他是加拿大皇傢學會院士、IEEE會士,在神經網絡、通信、自適應濾波器等領域成果頗豐,著有多部標準教材。

本書是關於神經網絡的全麵的、徹底的、可讀性很強的、最新的論述。全書共15章,主要內容包括Rosenblatt感知器、通過迴歸建立模型、最小均方算法、多層感知器、核方法和徑嚮基函數網絡、支持嚮量機、正則化理論、主分量分析、自組織映射、信息論學習模型、動態規劃、神經動力學、動態係統狀態估計的貝葉斯濾波等。

本書適閤作為高等院校計算機相關專業研究生及本科生的教材,也可供相關領域的工程技術人員參考。

神經網絡是計算智能和機器學習的重要分支,在諸多領域都取得瞭很大的成功。在眾多神經網絡著作中,影響最為廣泛的是Simon Haykin的《神經網絡原理》(第3版更名為《神經網絡與機器學習》)。在本書中,作者結閤近年來神經網絡和機器學習的最新進展,從理論和實際應用齣發,全麵、係統地介紹瞭神經網絡的基本模型、方法和技術,並將神經網絡和機器學習有機地結閤在一起。

本書不但注重對數學分析方法和理論的探討,而且也非常關注神經網絡在模式識彆、信號處理以及控製係統等實際工程問題的應用。本書的可讀性非常強,作者舉重若輕地對神經網絡的基本模型和主要學習理論進行瞭深入探討和分析,通過大量的試驗報告、例題和習題來幫助讀者更好地學習神經網絡。

本版在前一版的基礎上進行瞭廣泛修訂,提供瞭神經網絡和機器學習這兩個越來越重要的學科的最新分析。

本書特色:

1. 基於隨機梯度下降的在綫學習算法;小規模和大規模學習問題。

2. 核方法,包括支持嚮量機和錶達定理。

3. 信息論學習模型,包括連接、獨立分量分析(ICA)、一緻獨立分量分析和信息瓶頸。

4. 隨機動態規劃,包括逼近和神經動態規劃。

5. 逐次狀態估計算法,包括卡爾曼和粒子濾波器。

6. 利用逐次狀態估計算法訓練遞歸神經網絡。

7. 富有洞察力的麵嚮計算機的試驗。

用戶評價

評分

##數學要求太高,翻譯狗屎

評分

評分

評分

##這種書還是讀瞭會用比較重要。

評分

##理論性強,可讀性很好。

評分

##是很全麵的機器學習理論書籍,不過大多數讀者是看不明白的,翻譯也很一般。 p92 三個標準化步驟的結果,消除均值、去相關性以及協方差均衡 是很全麵的機器學習理論書籍。 p94 對於神經元,訓練率應該與突觸數量成反比。 p92 三個標準化步驟的結果,消除均值、去相關性以及協方...  

評分

評分

##垃圾翻譯。 P370 馬爾剋夫鏈的遍曆性 the long-term proportion of time spent by the chain .. The proportion of time spent in state i after k returns, denoted by.. The return times T_i form a sequence of statistically independent and identically distributed ran...  

評分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有