Simon Haykin 於1953年獲得英國伯明翰大學博士學位,目前為加拿大McMaster大學電子與計算機工程係教授、通信研究實驗室主任。他是國際電子電氣工程界的著名學者,曾獲得IEEE McNaughton金奬。他是加拿大皇傢學會院士、IEEE會士,在神經網絡、通信、自適應濾波器等領域成果頗豐,著有多部標準教材。
本書是關於神經網絡的全麵的、徹底的、可讀性很強的、最新的論述。全書共15章,主要內容包括Rosenblatt感知器、通過迴歸建立模型、最小均方算法、多層感知器、核方法和徑嚮基函數網絡、支持嚮量機、正則化理論、主分量分析、自組織映射、信息論學習模型、動態規劃、神經動力學、動態係統狀態估計的貝葉斯濾波等。
本書適閤作為高等院校計算機相關專業研究生及本科生的教材,也可供相關領域的工程技術人員參考。
Provides a comprehensive foundation of neural networks, recognizing the multidisciplinary nature of the subject, supported with examples, computer-oriented experiments, end of chapter problems, and a bibliography. DLC: Neural networks (Computer science).
##我的研究生課程Neural Networks就是用的本書第二版。因為教授說瞭,他不喜歡更新的第三版。 感覺本書基本涵蓋瞭神經網絡的許多基礎部分和重要方麵。像Back Propagation, Radial-Basis Function,Self-Organizing Maps,以及single neuron中的Hebbian Learning, Competitive L...
評分##神經網絡不僅是現在的思維模式,計算機的將來計算模式,還是簡單的細胞的運算模式。他們沒有真正的思考,而是計算。計算是機器也能夠做到的,因此不管人是否理解或者機器是否知道,都可以從容應對。而不知道的事物如此之多,因此不必擔心他們會自動的進入圈套。他們不僅是可以...
評分 評分 評分 評分##原書:Neural Networks and Learning Machines 土豪,注意,這是 Learning Machines, 而不是 Machine Learning 神經網絡與學習機會更好。
評分##內容不及後續版本來的多,但是主綫非常清晰,入門的話這個最好瞭。 看著看著,我想起瞭那一句老話:一人翻為佳,二人翻為庸,三人翻為渣,若是三人等,則弗如渣渣 —————————— 這本書的譯者不知道是不大熟悉這方麵,還是機翻習慣瞭? 這本書本身大多是數學理論的堆砌,沒有比較好的基礎很難看懂,加上譯者含混過關,大量的機翻體驗與...
評分 評分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有