流形、张量分析和应用(第2版) [Manifollds, Tensor Analysis, and Applications 2nd ed]

流形、张量分析和应用(第2版) [Manifollds, Tensor Analysis, and Applications 2nd ed] pdf epub mobi txt 电子书 下载 2025

[美] 亚伯拉罕(Abraham P.) 著
承接 住宅 自建房 室内改造 装修设计 免费咨询 QQ:624617358 一级注册建筑师 亲自为您回答、经验丰富,价格亲民。无论项目大小,都全力服务。期待合作,欢迎咨询!QQ:624617358
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510070181
版次:2
商品编码:11483421
包装:平装
外文名称:Manifollds, Tensor Analysis, and Applications 2nd ed
开本:24开
出版时间:2014-03-01
用纸:胶版纸
页数:654
正文语种:英文

具体描述

内容简介

  The purpose of this book is to provide core material in nonlinear analysis for mathematicians. physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism. plasma dynamics and control theory are given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development.

内页插图

目录

Preface
Background Notation
CHAPTER 1 Topology
1.1 Topological Spaces
1.2 Metric Spaces
1.3 Continuity
1.4 Subspaces. Products. and Quotients
1.5 Compactness
1.6 Connectedness
1.7 Baire Spaces

CHAPTER 2 Banach Spaces and Differential Calculus
2.1 Banach Spaces
2.2 Linear and Multilinear Mappings
2.3 The Derivativc
2.4 Propcrties of che Dcrivarive
2.5 The Inverse and Implicit Function Theorems

CHAPTER 3 Manifolds and Vector Bundles
3.1 Manifolds
3.2 Submanifolds. Products. and Mappings
3.3 The Tangcnt Bundle
3.4 Veaor Bundles
3.5 Submersions. Immersions and Transversality

CHAPTER 4 Vector Fields and Dynamical Systems
4.1 Vector Fields and Flows
4.2 Vector Fields as Differemial Operators
4.3 An Imroduction to Dynamical Systems
4.4 Frobenius' Theorcm and Foliations

CHAPTER 5 Tensors
5.1 Tensors in Linear Spaces
5.2 Tensor Bundles and Tensor Fields
5.3 The Lie Derivative: Algebraic Approach
5.4 The Lie Derivative: Dynamic Approach
5.5 Partitions of Unity

CHAPTER 6 Differential Forms
6.1 Exterior Algebra
6.2 Determinants. Volumes. and the Hodge Star Operator
6.3 Differential Forms
6.4 The Exterior Derivative. tnterior Produa. and Lie Derivative
6.5 Orientation. Volume Elements, and the Codifferential

CHAPTER 7 Integration on Manifolds
7.1 The Definition of (he Integral
7.2 Stokes' Theorem
7.3 The Classical Theorems of Green. Gauss, and Stokes
7.4 Induced Flows on Function Spaces and Ergodicity
7.5 Introduction to Hodge-deRham Theory and Topological Applicarions of
Differential Forms

CHAPTER 8 Applications
8.1 Hamiltonian Mechanics
8.2 Fluid Mechanics
8.3 Electromagnctism
8.3 The Lie-Poisson Bracket in Continuum Mechanics and Plasma Physics
8.4 Constraints and Control

References
Index
Supplementary Chapters-Available from the authors as they are produced
S-1 Lie Groups
S-2 Introduction to Differential Topology
S-3 Topics in Riemannian Geometry

前言/序言



用户评价

评分

书不错,优惠的时候买了很多!

评分

好书!好书!

评分

京东上买东西还是体验不错,货真价实!

评分

Springer的书必属经典

评分

~不错。好好学习,努力变得牛逼

评分

好书,英文原版书就是比较难买,而且价格贵

评分

。。。。。。。。。。。。。

评分

cool……

评分

专著,数学相关专业人员可以一看!

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有