代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf  mobi txt 电子书 下载

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
[美] 梅西 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-26

商品介绍



出版社: 世界图书出版公司
ISBN:9787510004421
版次:1
商品编码:10184569
包装:平装
外文名称:Algebraic Topology:An Introduction
开本:16开
出版时间:2009-04-01
用纸:胶版纸
页数:261
正文语种:英语

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

This textbook is designed to introduce advanced undergraduate or beginning graduate students to algebraic topology as painlessly as possible. The principal topics treated are 2-dimensional manifolds, the fundamental group, and covering spaces, plus the group theory needed in these topics. The only prerequisites are some group theory, such as that normally contained in an undergraduate algebra course on the junior-senior level, and a one-semester undergraduate course in general topology.
The topics discussed in this book are "standard" in the sense that several well-known textbooks and treatises devote a few sections or a chapter to them. This, I believe, is the first textbook giving a straightforward treatment of these topics, stripped of all unnecessary definitions, terminology, etc., and with numerous examples and exercises, thus making them intelligible to advanced undergraduate students.

内页插图

目录

CHAPTERONETwo-DimensionalManifolds
1 Introduction
2 Definitionandexamplesofn-manifolds
3 Orientablevs.nonorientablemanifolds
4 Examplesofcompact,connected2-manifolds
5 Statementoftheclassificationtheoremforcompactsurfaces
6 Triangulationsofcompactsurfaces
7 ProofofTheorem5.1
8 TheEulercharacteristicofasurface
9 Manifoldswithboundary
10 Theclassificationofcompact,connected2-manifoldswithboundary
11 TheEulercharacteristicofaborderedsurface
12 ModelsofcompactborderedsurfacesinEuclidean3-space
13 Remarksonnoncompactsurfaces

CHAPTERTWOTheFundamentalGroup
1 Introduction
2 Basicnotationandterminology
3 Definitionofthefundamentalgroupofaspace
4 Theeffectofacontinuousmai)pingonthefundamentalgroup
5 Thefundamentalgroupofacircleisinfinitecyclic
6 Application:TheBrouwerfixed-pointtheoremilldimension2
7 Thefundamentalgroupofaproductspace
8 Homotopytypeandhomotopyequivalenceofspaces

CHAPTERTHREEFreeGroupsandFreeProductsofGroups
1 Introduction
2 Theweakproductofabeliangroups
3 Freeabeliangroups
4 Freeproductsofgroups
5 Freegroups
6 Thepresentationofgroupsbygeneratorsandrelations
7 Universalmappingproblems

CHAPTERFOURScifertandVanKampenTheoremontheFundamentalGroupoftheUnionofTwoSpaces.Applic
ations
1 Introduction
2 StatementandproofofthetheoremofSeifertandVanKampen
3 FirstapplicationofTheorem2.1
4 SecondapplicationofTheorem2.1
5 Structureofthefundamentalgroupofacompactsurface
6 Applicationtoknottheory

CHAPTERFIVECoveringSpaces
1 Introduction
2 Definitionandsomeexamplesofcoveringspaces
3 Liftingofpathstoacoveringspace
4 Thefundamentalgroupofacoveringspace
5 Liftingofarbitrarymapstoacoveringspace
6 Homomorphismsandautomorphismsofcoveringspaces
7 Theactionofthegroupπ(X,x)onthesetp-(x)
8 Regularcoveringspacesandquotientspaces
9 Application:TheBorsuk-Ulamtheoremforthe2-sphere
10 Theexistencetheoremforcoveringspaces
11 Theinducedcoveringspaceoverasubspace
12 Pointsettopologyofcoveringspaces

CHAPTERSIXTheFundamentalGroupandCoveringSpacesofaGraph.ApplicationstoGroupTheory
1 Introduction
2 Definitionandexamples
3 Basicpropertiesofgraphs
4 Trees
5 Thefundamentalgroupofagraph
6 TheEulercharacteristicofafinitegraph
7 Coveringspacesofagraph
8 Generatorsforasubgroupoffreegroup

CHAPTERSEVENTheFundamentalGroupofHigherDimensionalSpaces
1 Introduction
2 Adjunctionof2-cellstoaspace
3 Adjunctionofhigherdimensionalcellstoaspace
4 CW-complexes
5 TheKuroshsubgrouptheorem
6 GrushkosTheorem

CHAPTEREIGHTEpilogue
APPENDIXATheQuotientSpaceorIdentificationSpaceTopology
1 Definitionsandbasicproperties
2 Ageneralizationofthequotientspacetopology
3 Quotientspacesandproductspaces
4 Subspaceofaquotientspacevs.quotientspaceofasubspace
5 ConditionsforaquotientspacetobeaHausdorffspace

APPENDIXBPermutationGroupsorTransformationGroups
1 Basicdefinitions
2 HomogeneousG-spaces
Index

前言/序言

  This textbook iS designed to introduce advanced undergraduate or beginning graduate students to algebraic topology as painlessly as pos- sible.The principal topics treated are 2.dimcnsional manifolds.the fundamental group,and covering spaces,plus the group theory needed in these topics.The only prerequisites are some group theory,such as that normally centained jn an undergraduate algebra course on the junior-senior level,and a one·semester undergraduate course in general topology.
  The topics discussed in this book are“standard”in the sense that several well-known textbooks and treatises devote a fey.r sections or a chapter to them.This。I believe,iS the first textbook giving a straight- forward treatment of these topics。stripped of all unnecessary definitions, terminology,etc.,and with numerous examples and exercises,thus making them intelligible to advanced undergraduate students.
  The SUbject matter i8 used in several branches of mathematics other than algebraic topology,such as differential geometry,the theory of Lie groups,the theory of Riemann surfaces。or knot theory.In the develop- merit of the theory,there is a nice interplay between algebra and topology which causes each to reinfoFee interpretations of the other.Such an interplay between different topics of mathematics breaks down the often artificial subdivision of mathematics into difierent“branches”and emphasizes the essential unity of all mathematics.

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024

代数拓扑导论 [Algebraic Topology:An Introduction] 下载 epub mobi pdf txt 电子书 2024

代数拓扑导论 [Algebraic Topology:An Introduction] pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

代数拓扑导论 [Algebraic Topology:An Introduction] mobi pdf epub txt 电子书 下载 2024

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

这个可以作为代数拓扑的入门书

评分

评分

金典书籍

评分

给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆豆给豆

评分

印刷很好

评分

好吧

评分

比较难懂,如非特别需要,不建议买英文版

评分

印刷很好

评分

比较难懂,如非特别需要,不建议买英文版

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

代数拓扑导论 [Algebraic Topology:An Introduction] epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有