內容簡介
《拓撲空間》是一部本科生學習拓撲空間的基礎教程。引導讀者很好的學習拓撲中有關幾何的東西什麼是最重要的。《拓撲空間》的內容分為三大部分,綫和麵、矩陣空間和拓撲空間。書中將大量的數學詞匯概念囊括其中,不要求讀者對簡單定理或者集閤知識十分瞭解,從而減少讀者理解上的難度。收斂定理的應用在幫助讀者抓住重點的同時,逐漸接觸並理解拓撲的概念,書中的知識點步步逼近,前九節重在為本科生講述矩陣空間的知識,同時也包括瞭大量的材料,這些將成為研究生學習的教程。
內頁插圖
目錄
Preface
PART Ⅰ THE LINE AND THE PLANE
Chapter 1 What Topology Is About
Topological Equivalence
Continuity and Convergence
A Few Conventions
Extra: Topological Diversions
Exercises
Chapter 2 Axioms for R
Extra: Axiom Systems
Exercises
Chapter 3 Convergent Sequences and Continuity
Subsequences
Uniform Continuity
The Plane
Extra: Bolzano (1781-1848)
Exercises
ChaPter 4 Curves in the Plane
Curves
Homeomorphic Sets
Brouwer's Theorem
Extra: L.E.J. Brouwer (1881-1966)
PART Ⅱ METRI SPACES
Chapter 5 Metrics
Extra: Camille Jordan (1838-1922)
Exercises
Chapter 6 Open and Closed Sets
Subsets of a Metric Space
Collections of Sets
Similar Metrics
Interior and Closure
The Empty Set
Extra: Cantor (1845-1918)
Exercises
Chapter 7 Completeness
Extra: Meager Sets and the Mazur Game
Exercises
Chapter 8 Uniform Convergence
Extra: Spaces of Continuous Functions
Exercises
Chapter 9 Sequential Compactness
Extra: The p-adic Numbers
Exercises
Chapter 10 Convergent Nets
Inadequacy of Sequences
Convergent Nets
-Extra: Knots
Exercises
Chapter 11 Transition to TOpology
Generalized Convergence
Topologies
Extra: The Emergence of the Professional Mathematician
Exercises
PART Ⅲ TOPOLOGICAL SPACES
Chapter 12 Topological Spaces
Extra: Map Coloring
Exercises
Chapter 13 Compactness and the Hausdorff Property
Compact Spaces
Hausdorff Spaces
Extra: Hausdorff and the Measure Problem
Exercises
Chapter 14 Products and Quotients
Product Spaces
Quotient Spaces
Extra: Surfaces
Exercises
Chapter 15 The Hahn-Tietze-Tong-Urysohn Theorems
Urysohn's Lemma
Interpolation and Extension
Extra: Nonstandard Mathematics
Exercises
Chapter 16 Connectedness
Connected Spaces
The Jordan Theorem
Extra: Continuous Deformation of Curves
Exercises
Chapter 17 Tvchonoffs Theorem
Extra: The Axiom of Choice
Exercises
PAler Ⅳ PosTsciuer
Chapter 18 A Smorgasbord for Further Study
Countability Conditions
Separation Conditions
Compactness Conditions
Compactifications
Connectivity Conditions
Extra: Dates from the History of General Topology
Exercises
Chapter 19 Countable Sets
Extra: The Continuum Hypothesis
A Farewell to the Reader
Literature
Index of Symbols
Index of Terms
前言/序言
拓撲空間 [Topological Spaces: From Distance to Neighborhood] epub pdf mobi txt 電子書 下載 2025
拓撲空間 [Topological Spaces: From Distance to Neighborhood] 下載 epub mobi pdf txt 電子書
拓撲空間 [Topological Spaces: From Distance to Neighborhood] mobi pdf epub txt 電子書 下載 2025
評分
☆☆☆☆☆
對任意x∈X,如果Z的子集U包含含有x的一個開集則U稱為x的一個鄰域。如果X的子集A滿足X-A是開集,則稱X是閉集。
評分
☆☆☆☆☆
評分
☆☆☆☆☆
編輯本段
評分
☆☆☆☆☆
什麼是麯綫?樸素的觀念是點動成綫,隨一個參數(時間)連續變化的動點所描齣的軌跡就是麯綫。可是,皮亞諾在1890年竟造齣一條這樣的“麯綫”,它填滿整個正方形!這激發瞭關於維數概念的深入探討,經過20~30年纔取得關鍵性的突破。
評分
☆☆☆☆☆
拓撲空間(topological space),賦予拓撲結構的集閤。如果對一個非空集閤X給予適當的結構,使之能引入微積分中的極限和連續的概念,這樣的結構就稱為拓撲,具有拓撲結構的空間稱為拓撲空間。引入拓撲結構的方法有多種,如鄰域係、開集係、閉集係、閉包係、內部係等不同方法。
評分
☆☆☆☆☆
評分
☆☆☆☆☆
托姆以微分拓撲學中微分映射的奇點理論為基礎創立瞭突變理論,為從量變到質變的轉化提供各種數學模式。在物理學、化學、生物學、語言學等方麵已有不少應用。除瞭通過各數學分支的間接的影響外,拓撲學的概念和方法對物理學(如液晶結構缺陷的分類)、化學(如分子的拓撲構形)、生物學(如DNA的環繞、拓撲異構酶)都有直接的應用。
評分
☆☆☆☆☆
集解方法
評分
☆☆☆☆☆
對任意x∈X,如果Z的子集U包含含有x的一個開集則U稱為x的一個鄰域。如果X的子集A滿足X-A是開集,則稱X是閉集。
拓撲空間 [Topological Spaces: From Distance to Neighborhood] epub pdf mobi txt 電子書 下載 2025