內容簡介
《多項式和多項式不等式》是數學研究生教材(gtm)第161捲,主要介紹多項式和有理函數,重點論述代數多項式和三角多項式的特性,同時也介紹瞭多項式幾何、正交多項式、切比雪夫和馬可夫係、müntz係和müntz-type型稠密性定理,以及不等式用於多項式和有理函數等理論。其中有些內容較同類圖書更加全麵。目次:導論和基本特性;特殊多項式;切比雪夫和笛卡兒係;稠密性問題;基本不等式;müntz空間中的不等式;有理函數空間中的不等式。
目錄
preface
chapter 1 introduction and basic properties
1.1 polynomials and rational functions
1.2 the fundamental theorem of algebra
1.3 zeros of the derivative
chapter 2 some special polynomials
2.1 chebyshev polynomials
2.2 orthogonal functions
2.3 orthogonal polynomials
2.4 polynomials with nonnegative coefficients
chapter 3 chebyshev and descartes systems
3.1 chebyshev systems
3.2 descartes systems
3.3 chebyshev polynomials in chebyshev spaces
3.4 miintz-legendre polynomials
3.5 chebyshev polynomials in rational spaces
chapter 4 denseness questions
4.1 variations on the weierstrass theorem
4.2 miintz's theorem 4.3 unbounded bernstein inequalities
4.4 miintz rationals
chapter 5 basic inequalities
5.1 classical polynomial inequalities
5.2 markov's inequality for higher derivatives
5.3 inequalities for norms of factors
chapter 6 inequalities in muntz spaces
6.1 inequalities in mfintz spaces
6.2 nondense miintz spaces
chapter 7 inequalities for rational function spaces
7.1 inequalities for rational function spaces
7.2 inequalities for logarithmic derivatives
appendix a1 algorithms and computational concerns
appendix a2 orthogonality and irrationality
appendix a3 an interpolation theorem
appendix a4 inequalities for generalized polynomials in lp
appendix a5 inequalities for polynomials with constraints
bibliography
notation
index
前言/序言
多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2024
多項式和多項式不等式 下載 epub mobi pdf txt 電子書
評分
☆☆☆☆☆
當F是實數域R時,由於實係數多項式的虛根是成對齣現的,即虛根的共軛數仍是根,因此R[x]中不可約多項式是一次的或二次的。所以每個實係數多項式都可以分解成一些一次和二次的不可約多項式的乘積。實係數二次多項式αx2+bx+с不可約的充分必要條件是其判彆式b2-4αс<0。
評分
☆☆☆☆☆
應用高斯引理可證,如果一個整係數多項式可以分解為兩個次數較低的有理係數多項式的乘積,那麼它一定可以分解為兩個整係數多項式的乘積。這個結論可用來判斷有理係數多項式的不可約性。關於Q[x]中多項式的不可約性的判斷,還有艾森斯坦判彆法:對於整係數多項式,如果有一個素數p能整除αn-1,αn-2,…,α1,α0,但不能整除αn,且p2不能整除常數項α0,那麼ƒ(x)在Q上是不可約的。由此可知,對於任一自然數n,在有理數域上xn-2是不可約的。因而,對任一自然數n,都有n次不可約的有理係數多項式。
評分
☆☆☆☆☆
編輯本段
評分
☆☆☆☆☆
相關內容買瞭一本中文的,一本英文的,可見多項式真是挺難理解的……
評分
☆☆☆☆☆
這書包裝精美,可讀性強。不錯
評分
☆☆☆☆☆
加法與乘法
評分
☆☆☆☆☆
F[x]中任一個次數不小於 1的多項式都可以分解為F上的不可約多項式的乘積,而且除去因式的次序以及常數因子外,分解的方法是惟一的。
評分
☆☆☆☆☆
代數基本定理是指所有一元 n 次(復數)多項式都有 n 個(復數)根。
評分
☆☆☆☆☆
基本定理