多項式和多項式不等式 epub pdf  mobi txt 電子書 下載

多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025

多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025


簡體網頁||繁體網頁
[加] 博爾維恩 著

下載链接在页面底部


下載連結1
下載連結2
下載連結3
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-06-02

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510037573
版次:1
商品編碼:10914305
包裝:平裝
開本:24開
齣版時間:2011-07-01
頁數:480

多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

《多項式和多項式不等式》是數學研究生教材(gtm)第161捲,主要介紹多項式和有理函數,重點論述代數多項式和三角多項式的特性,同時也介紹瞭多項式幾何、正交多項式、切比雪夫和馬可夫係、müntz係和müntz-type型稠密性定理,以及不等式用於多項式和有理函數等理論。其中有些內容較同類圖書更加全麵。目次:導論和基本特性;特殊多項式;切比雪夫和笛卡兒係;稠密性問題;基本不等式;müntz空間中的不等式;有理函數空間中的不等式。

目錄

preface
chapter 1 introduction and basic properties
1.1 polynomials and rational functions
1.2 the fundamental theorem of algebra
1.3 zeros of the derivative

chapter 2 some special polynomials
2.1 chebyshev polynomials
2.2 orthogonal functions
2.3 orthogonal polynomials
2.4 polynomials with nonnegative coefficients

chapter 3 chebyshev and descartes systems
3.1 chebyshev systems
3.2 descartes systems
3.3 chebyshev polynomials in chebyshev spaces
3.4 miintz-legendre polynomials
3.5 chebyshev polynomials in rational spaces

chapter 4 denseness questions
4.1 variations on the weierstrass theorem
4.2 miintz's theorem 4.3 unbounded bernstein inequalities
4.4 miintz rationals

chapter 5 basic inequalities
5.1 classical polynomial inequalities
5.2 markov's inequality for higher derivatives
5.3 inequalities for norms of factors

chapter 6 inequalities in muntz spaces
6.1 inequalities in mfintz spaces
6.2 nondense miintz spaces

chapter 7 inequalities for rational function spaces
7.1 inequalities for rational function spaces
7.2 inequalities for logarithmic derivatives
appendix a1 algorithms and computational concerns
appendix a2 orthogonality and irrationality
appendix a3 an interpolation theorem
appendix a4 inequalities for generalized polynomials in lp
appendix a5 inequalities for polynomials with constraints
bibliography
notation
index

前言/序言



多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025

多項式和多項式不等式 下載 epub mobi pdf txt 電子書

多項式和多項式不等式 pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2025

多項式和多項式不等式 mobi pdf epub txt 電子書 下載 2025

多項式和多項式不等式 epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

F[x]中任一個次數不小於 1的多項式都可以分解為F上的不可約多項式的乘積,而且除去因式的次序以及常數因子外,分解的方法是惟一的。

評分

這書包裝精美,可讀性強。不錯

評分

兩個本原多項式的乘積是本原多項式。

評分

當F是復數域C時,根據代數基本定理,可證C[x]中不可約多項式都是一次的。因此,每個復係數多項式都可分解成一次因式的連乘積。

評分

評分

當F是實數域R時,由於實係數多項式的虛根是成對齣現的,即虛根的共軛數仍是根,因此R[x]中不可約多項式是一次的或二次的。所以每個實係數多項式都可以分解成一些一次和二次的不可約多項式的乘積。實係數二次多項式αx2+bx+с不可約的充分必要條件是其判彆式b2-4αс<0。

評分

編輯本段

評分

編輯本段

評分

比較廣義的定義,1個或0個單項式的和也算多項式。按這個定義,多項式就是整式。實際上,還沒有一個隻對狹義多項式起作用,對單項式不起作用的定理。0作為多項式時,次數為正無窮大。單項式和多項式統稱為整式。

多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025

类似图書 點擊查看全場最低價

多項式和多項式不等式 epub pdf mobi txt 電子書 下載 2025


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有