奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions]

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] pdf epub mobi txt 电子书 下载 2025

施泰恩(Stein E.M.) 著
图书标签:
  • 奇异积分
  • 实分析
  • 调和分析
  • 函数可微性
  • 傅里叶分析
  • 辛奇积分
  • 微积分
  • 数学分析
  • 泛函分析
  • 概率论
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510035135
版次:1
商品编码:10891446
包装:平装
外文名称:Singular Integrals and Diffferentiability Properties of Functions
开本:24开
出版时间:2011-06-01
页数:287
正文语种:英文

具体描述

内容简介

This book is an outgrowth of a course which I gave at Orsay duringthe academic year 1 966.67 MY purpose in those lectures was to pre-sent some of the required background and at the same time clarify theessential unity that exists between several related areas of analysis.These areas are:the existence and boundedness of singular integral op-erators;the boundary behavior of harmonic functions;and differentia-bility properties of functions of several variables.AS such the commoncore of these topics may be said to represent one of the central develop-ments in n.dimensional Fourier analysis during the last twenty years,and it can be expected to have equal influence in the future.These pos.

作者简介

作者:(美国)施泰恩(SteinE.M.)

内页插图

目录

PREFACE
NOTATION
I.SOME FUNDAMENTAL NOTIONS OF REAL.VARIABLE THEORY
The maximal function
Behavior near general points of measurable sets
Decomposition in cubes of open sets in R”
An interpolation theorem for L
Further results

II.SINGULAR INTEGRALS
Review of certain aspects of harmonic analysis in R”
Singular integrals:the heart of the matter
Singular integrals:some extensions and variants of the
preceding
Singular integral operaters which commute with dilations
Vector.valued analogues
Further results

III.RIESZ TRANSFORMS,POLSSON INTEGRALS,AND SPHERICAI HARMONICS
The Riesz transforms
Poisson integrals and approximations to the identity
Higher Riesz transforms and spherical harmonics
Further results

IV.THE LITTLEWOOD.PALEY THEORY AND MULTIPLIERS
The Littlewood-Paley g-function
The functiong
Multipliers(first version)
Application of the partial sums operators
The dyadic decomposition
The Marcinkiewicz multiplier theorem
Further results

V.DIFFERENTIABlLITY PROPERTIES IN TERMS OF FUNCTION SPACES
Riesz potentials
The Sobolev spaces
BesseI potentials
The spaces of Lipschitz continuous functions
The spaces
Further results

VI.EXTENSIONS AND RESTRICTIONS
Decomposition of open sets into cubes
Extension theorems of Whitney type
Extension theorem for a domain with minimally smooth
boundary
Further results

VII.RETURN TO THE THEORY OF HARMONIC FUNCTIONS
Non-tangential convergence and Fatou'S theorem
The area integral
Application of the theory of H”spaces
Further results

VIII.DIFFERENTIATION OF FUNCTIONS
Several qotions of pointwise difierentiability
The splitting of functions
A characterization 0f difrerentiability
Desymmetrization principle
Another characterization of difirerentiabiliW
Further results
APPENDICES
Some Inequalities
The Marcinkiewicz Interpolation Theorem
Some Elementary Properties of Harmonic Functions
Inequalities for Rademacher Functions
BlBLl0GRAPHY
INDEX

精彩书摘

The basic ideas of the theory of reaI variables are connected with theconcepts of sets and ftmctions,together with the processes of integrationand difirerentiation applied to them.WhiIe the essential aspects of theseideas were brought to light in the early part of our century,some of theirfurther applications were developed only more recently.It iS from thislatter perspective that we shall approach that part of the theory thatinterests US.In doing SO,we distinguish several main features: The theorem of Lebesgue about the differentiation of the integral.The study of properties related to this process iS best done in terms of a“maximal function”to which it gives rise:the basic features of the latterare expressed in terms of a“weak-type”inequality which iS characteristicof this situation. Certain covering lemmas.In general the idea iS to cover an arbitraryopen set in terms of a disioint union ofcubes or balls,chosen in a mannerdepending on the problem at hand.ORe such example iS a lemma ofWhitney,fTheorem 3).Sometimes,however,it SHffices to cover only aportion of the set。as in the simple covering lemma,which iS used to provethe weak-type inequality mentioned above. f31 Behavior near a‘'general”point of an arbitrary set.The simplest notion here iS that of point of density.More refined properties are bestexpressed in terms of certain integrals first studied systematically by Marcinkiewicz.
(4)The splitting of functions into their large and small parts.Thisfeature which iS more of a technique than an end in itself,recurs often.ItiS especially useful in proving Linequalities,as in the first theorem ofthis chapter.That part of the proof of the first theorem iS systematizedin the Marcinkiewicz interpolation theorem discussed in§4 of this chapter and also in Appendix B.
......

前言/序言



用户评价

评分

大师作品,可供扩大知识面

评分

欢迎您撰写这本书的原创书评

评分

本书作为调和分析方面的经典图书,基本上,即使不去仔细研读,至少是大家必备的参考书。是调和分析和偏微分方程领域研究人员的必备书籍。

评分

小学时,我每天上课需要经过一条石板路,石板路边有一座石条砌成的房子,每到黄昏,胭脂一般的天色,敷在明晃晃的石板路上,把整条巷子烘托得异常美好。也是每到这个时刻,就会听到一个女人啜泣的声音,凄凄婉婉,曲曲折折。也因此,那座房子在这所学校的学生里,被讲述成一个女鬼居住的地方。女鬼的名字就叫张美丽。

评分

评分

据说,她本来是个乖巧美丽的女人;据说,她喜欢上一个跟着轮船来这里进货的外地男人:据说,那男人长得身材魁梧,好打抱不平。在这个小镇,结婚前女人不能破身,她却私自把自己给了那男人。他们曾想私奔,最终被拦下,张美丽因而自杀。

评分

本套丛书是数学大师给本科生们写的分析学系列教材。第一作者E. M. Stein是一位调和分析大师,他是1999年沃尔夫奖获得者,同时,他也是一位卓越的教师。他的学生,和学生的学生,加起来超过两百多人,其中有两位已经获得了菲尔兹奖,2006年的菲尔兹奖获奖者之一即为他的学生陶哲轩。这套教材在Princeton大学使用,同时其它学校,比如UCLA等名校也在本科生教学中使用。其教学目的是,用统一的、联系的观点来把现代分析的核心内容教给本科生们,力图使本科生的分析学课程能接上现代数学研究的脉络。

评分

评分

书写的很好 是好书

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有