高等学校教材:数学物理方法与仿真(第2版) epub pdf  mobi txt 电子书 下载

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
杨华军 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-25

商品介绍



出版社: 电子工业出版社
ISBN:9787121139321
版次:1
商品编码:10804918
包装:平装
丛书名: 高等学校教材
开本:16开
出版时间:2011-07-01
用纸:胶版纸
页数:386
字数:640000
正文语种:中文

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

《高等学校教材:数学物理方法与仿真(第2版)》系统地阐述了复变函数论、数学物理方程的各种解法、特殊函数以及计算机仿真编程实践等内容,对培养思维能力和实践编程能力具有指导意义。《高等学校教材:数学物理方法与仿真(第2版)》在取材的深度和广度上充分考虑到前沿学科领域知识内容,形成了具有前沿学科特点的数学物理方法与计算机仿真相结合的系统化理论体系。
《高等学校教材:数学物理方法与仿真(第2版)》结构层次清晰,理论具有系统性和完整性,重点立足于对思维能力的培养,加强计算机仿真能力的训练,分别介绍了复变函数、数学物理方程和特殊函数的计算机仿真求解及其解的仿真图形显示。习题解答和仿真程序等可以通过网络下载。
《高等学校教材:数学物理方法与仿真(第2版)》可作为物理学、地球物理学、电子信息科学、光通信技术、空间科学、天文学、地质学、海洋科学、材料科学等学科领域的理工科大学本科教材,也可供相关专业的研究生、科技工作者作为参考资料并进行计算机仿真训练。

目录

第一篇 复变函数论
第1章 复数与复变函数
1.1 复数概念及其运算
1.1.1 复数概念
1.1.2 复数的基本代数运算
1.2 复数的表示
1.2.1 复数的几何表示
1.2.2 复数的三角表示
1.2.3 复数的指数表示
1.2.4 共轭复数
1.2.5 复球面、无穷远点
1.3 复数的乘幂与方根
1.3.1 复数的乘幂
1.3.2 复数的方根
1.3.3 实践编程:正17边形的几何作图法
1.4 区域
1.4.1 基本概念
1.4.2 区域的判断方法及实例分析
1.5 复变函数
1.5.1 复变函数概念
1.5.2 复变函数的几何意义---映射
1.6 复变函数的极限
1.6.1 复变函数极限概念
1.6.2 复变函数极限的基本定理
1.7 复变函数的连续
1.7.1 复变函数连续的概念
1.7.2 复变函数连续的基本定理
1.8 典型综合实例
小结
习题
计算机仿真编程实践
第2章 解析函数
2.1 复变函数导数与微分
2.1.1 复变函数的导数
2.1.2 复变函数的微分概念
2.1.3 可导的必要条件
2.1.4 可导的充分必要条件
2.1.5 求导法则
2.1.6 复变函数导数的几何意义
2.2 解析函数
2.2.1 解析函数的概念
2.2.2 解析函数的法则
2.2.3 函数解析的充分必要条件
2.2.4 解析函数的几何意义(映射的保角性)
2.3 初等解析函数
2.3.1 指数函数(单值函数)
2.3.2 对数函数---指数函数的反函数(多值函数)
2.3.3 三角函数(单值函数)
2.3.4 反三角函数(多值函数)
2.3.5 双曲函数(单值函数)
2.3.6 反双曲函数(多值函数)
2.3.7 整幂函数zn(单值函数)
2.3.8 一般幂函数与根式函数w=n槡z(多值函数)
2.3.9 多值函数的基本概念
2.4 解析函数与调和函数的关系
2.4.1 调和函数与共轭调和函数的概念
2.4.2 解析函数与调和函数之间的关系
2.4.3 解析函数的构建方法
2.5 解析函数的物理意义---平面矢量场
2.5.1 用解析函数表述平面矢量场
2.5.2 静电场的复势
2.6 典型综合实例
小结
习题
计算机仿真编程实践
第3章 复变函数的积分
3.1 复变函数的积分
3.1.1 复变函数积分的概念
3.1.2 复积分存在的条件及计算方法
3.1.3 复积分的基本性质
3.1.4 复积分的计算典型实例
3.1.5 复变函数环路积分的物理意义
3.2 柯西积分定理及其应用
3.2.1 柯西积分定理
3.2.2 不定积分
3.2.3 典型应用实例
3.2.4 柯西积分定理(柯西�补湃�定理)的物理意义
3.3 基本定理的推广---复合闭路定理
3.4 柯西积分公式
3.4.1 有界区域的单连通柯西积分公式
3.4.2 有界区域的复连通柯西积分公式
3.4.3 无界区域的柯西积分公式
3.5 柯西积分公式的几个重要推论
3.5.1 解析函数的无限次可微性(高阶导数公式)
3.5.2 解析函数的平均值公式
3.5.3 柯西不等式
3.5.4 刘维尔定理
3.5.5 莫勒纳定理
3.5.6 最大模原理
3.5.7 代数基本定理
3.6 典型综合实例
小结
习题
计算机仿真编程实践
第4章 解析函数的幂级数表示
4.1 复数项级数的基本概念
4.1.1 复数项级数概念
4.1.2 复数项级数的判断准则和定理
4.2 复变函数项级数
4.3 幂级数
4.3.1 幂级数概念
4.3.2 收敛圆与收敛半径
4.3.3 收敛半径的求法
4.4 解析函数的泰勒级数展开式
4.4.1 泰勒级数
4.4.2 将函数展开成泰勒级数的方法
4.5 罗朗级数及展开方法
4.5.1 罗朗级数
4.5.2 罗朗级数展开方法实例
4.5.3 用级数展开法计算闭合环路
积分
4.6 典型综合实例
小结
习题
计算机仿真编程实践
第5章 留数定理
5.1 解析函数的孤立奇点
5.1.1 孤立奇点概念
5.1.2 孤立奇点的分类及其判断定理
5.2 解析函数在无穷远点的性质
5.3 留数概念
5.4 留数定理与留数和定理
5.5 留数的计算方法
5.5.1 有限远点留数的计算方法
5.5.2 无穷远点的留数计算方法
5.6 用留数定理计算实积分
5.6.1 ∫2π0 R(cosθ,sinθ)dθ型积分
5.6.2 ∫+∞-∞P(x) Q(x)dx型积分
5.6.3 ∫+∞-∞ f(x)eiaxdx(a>0)型积分
5.6.4 其他类型(积分路径上有奇点)的
积分计算举例
5.7 典型综合实例
小结
习题
计算机仿真编程实践
第6章 保角映射
6.1 保角映射的概念
6.2 分式线性映射
6.2.1 分式线性映射的概念
6.2.2 两种基本映射
6.2.3 分式线性映射的性质
6.2.4 分式线性映射的确定及应用
6.2.5 三类典型的分式线性映射
6.3 几个初等函数所构成的映射
6.3.1 幂函数映射
6.3.2 指数函数w=ez映射
6.3.3 儒可夫斯基函数映射
6.4 典型综合实例
小结
习题
计算机仿真编程实践

第二篇 数学物理议程
第7章 数学建模---数学物理定解问题
7.1 数学建模---波动方程类型的建立
7.1.1 波动方程的建立
7.1.2 波动方程的定解条件
7.2 数学建模---热传导方程类型的建立
7.2.1 数学物理方程---热传导类型方程的建立
7.2.2 热传导(或扩散)方程的定解条件
7.3 数学建模---稳定场方程类型的建立
7.3.1 稳定场方程类型的建立
7.3.2 泊松方程和拉普拉斯方程的定解条件
7.4 数学物理定解理论
7.4.1 定解条件和定解问题的提法
7.4.2 数学物理定解问题的适定性
7.4.3 数学物理定解问题的求解方法
7.5 典型综合实例
小结
习题
计算机仿真编程实践
第8章 二阶线性偏微分方程的分类
8.1 基本概念
8.2 数学物理方程的分类
8.3 二阶线性偏微分方程标准化
8.4 二阶线性常系数偏微分方程的进一步化简
8.5 线性偏微分方程解的特征
8.6 典型综合实例
小结
习题
计算机仿真编程实践

第9章 行波法与达朗贝尔公式
9.1 二阶线性偏微分方程的通解
9.2 二阶线性偏微分方程的行波解
9.3 达朗贝尔公式
9.3.1 一维波动方程的达朗贝尔公式
9.3.2 达朗贝尔公式的物理意义
9.4 达朗贝尔公式的应用
9.4.1 齐次偏微分方程求解
9.4.2 非齐次偏微分方程的求解
9.5 定解问题的适定性验证
9.6 典型综合实例
小结
习题
计算机仿真编程实践
第10章 分离变量法
10.1 分离变量理论
10.1.1 偏微分方程变量分离及条件
10.1.2 边界条件可实施变量分离的条件
10.2 直角坐标系下的分离变量法
10.2.1 分离变量法介绍
10.2.2 解的物理意义
10.2.3 三维形式的直角坐标分离变量
10.2.4 直角坐标系分离变量例题分析
10.3 二维极坐标系下拉普拉斯方程的分离变量法
10.4 球坐标系下的分离变量法
10.4.1 拉普拉斯方程Δu=0的分离变量(与时间无关)
10.4.2 与时间有关的方程的分离变量
10.4.3 亥姆霍兹方程的分离变量
10.5 柱坐标系下的分离变量
10.5.1 与时间无关的拉普拉斯方程分离变量
10.5.2 与时间相关的方程的分离变量
10.6 非齐次二阶线性偏微分方程的解法
10.6.1 泊松方程非齐次方程的特解法
10.6.2 非齐次偏微分方程的傅里叶级数解法
10.7 非齐次边界条件的处理
10.8 典型综合实例
小结
习题
计算机仿真编程实践
第11章 幂级数解法---本征值问题
11.1 二阶常微分方程的幂级数解法
11.1.1 幂级数解法理论概述
11.1.2 常点邻域上的幂级数解法(勒让德方程的求解)
11.1.3 奇点邻域的级数解法(贝塞尔方程的求解)
11.2 施图姆�擦跷�尔本征值
11.2.1 施图姆�擦跷�尔本征值问题
11.2.2 施图姆�擦跷�尔本征值问题的性质
11.2.3 广义傅里叶级数
11.2.4 复数的本征函数族
11.2.5 希尔伯特空间矢量分解
11.3 综合实例
小结
习题
计算机仿真编程实践
第12章 格林函数法
12.1 格林公式
12.2 解泊松方程的格林函数法
12.3 无界空间的格林函数基本解
12.3.1 三维球对称情形
12.3.2 二维轴对称情形
12.4 用电像法确定格林函数
12.4.1 上半平面区域第一边值问题的格林函数构建方法
12.4.2 上半空间内求解拉普拉斯方程的第一边值问题
12.4.3 圆形区域第一边值问题的格林函数构建
12.4.4 球形区域第一边值问题的格林函数构建
12.5 典型综合实例
小结
习题
计算机仿真编程实践
第13章 积分变换法求解定解问题
13.1 傅里叶变换
13.1.1 傅里叶变换
13.1.2 广义傅里叶变换
13.1.3 傅里叶变换的基本性质
13.2 拉普拉斯变换
13.2.1 拉普拉斯变换
13.2.2 拉普拉斯变换的性质
13.2.3 拉普拉斯变换的反演
13.3 傅里叶变换法解数学物理定解问题
13.3.1 弦振动问题
13.3.2 热传导问题
13.3.3 稳定场问题
13.4 拉普拉斯变换解数学物理定解问题
13.4.1 无界区域的问题
13.4.2 半无界区域的问题
小结
习题
第14章 保角变换法求解定解问题
14.1 保角变换与拉普拉斯方程边值问题的关系
14.2 保角变换法求解定解问题典型实例
习题
计算机仿真编程
第15章 数学物理方程综述
15.1 线性偏微分方程解法综述
15.2 非线性偏微分方程
15.2.1 孤立波
15.2.2 冲击波
小结
第二篇综合测试题

第三篇 特殊函数
第16章 勒让德多项式---球函数
16.1 勒让德方程及其解的表示
16.1.1 勒让德方程、勒让德多项式
16.1.2 勒让德多项式的表示
16.2 勒让德多项式的性质及其应用
16.2.1 勒让德多项式的性质
16.2.2 勒让德多项式的应用(广义傅里叶级数展开)
16.3 勒让德多项式的生成函数(母函数)
16.3.1 勒让德多项式的生成函数的定义
16.3.2 勒让德多项式的递推公式
16.4 连带勒让德函数
16.4.1 连带勒让德函数的定义
16.4.2 连带勒让德函数的微分表示
16.4.3 连带勒让德函数的积分表示
16.4.4 连带勒让德函数的正交关系与模的公式
16.4.5 连带勒让德函数---广义傅里叶级数
16.4.6 连带勒让德函数的递推公式
16.5 球函数
16.5.1 球函数的方程及其解
16.5.2 球函数的正交关系和模的公式
16.5.3 球面上函数的广义傅里叶级数
16.5.4 拉普拉斯方程的非轴对称定解问题
16.6 典型综合实例
小结
习题
计算机仿真编程实践
第17章 贝塞尔函数
17.1 贝塞尔方程及其解
17.1.1 贝塞尔方程
17.1.2 贝塞尔方程的解
17.2 三类贝塞尔函数的表示式及性质
17.2.1 第一类贝塞尔函数
17.2.2 第二类贝塞尔函数
17.2.3 第三类贝塞尔函数
17.3 贝塞尔函数的基本性质
17.3.1 贝塞尔函数的递推公式
17.3.2 贝塞尔函数与本征值问题
17.3.3 贝塞尔函数的正交性和模
17.3.4 广义傅里叶�脖慈�尔级数
17.3.5 贝塞尔函数的母函数(生成函数)
17.4 虚宗量贝塞尔方程
17.4.1 虚宗量贝塞尔方程的解
17.4.2 第一类虚宗量贝塞尔函数的性质
17.4.3 第二类虚宗量贝塞尔函数的性质
17.5 球贝塞尔方程
17.5.1 球贝塞尔方程
17.5.2 球贝塞尔方程的解
17.5.3 球贝塞尔函数的级数表示
17.5.4 球贝塞尔函数的递推公式
17.5.5 球贝塞尔函数的初等函数表示式
17.5.6 球形区域内的球贝塞尔
方程的本征值问题
17.6 典型综合实例
小结
习题
计算机仿真编程实践
第三篇综合测试题

第四篇 计算机仿真
第18章 计算机仿真在复变函数中的应用
18.1 复数运算和复变函数的图形
18.1.1 复数的基本运算
18.1.2 复数的运算
18.1.3 复变函数的图形
18.2 复变函数的极限与导数、解析函数
18.2.1 复变函数的极限
18.2.2 复变函数的导数
18.2.3 解析函数
18.3 复变函数的积分与留数定理
18.3.1 非闭合路径的积分计算
18.3.2 闭合路径的积分计算
18.4 复变函数级数
18.4.1 复变函数级数的收敛及其收敛半径
18.4.2 单变量函数的泰勒级数展开
18.4.3 多变量函数的泰勒级数展开
18.5 傅里叶变换及其逆变换
18.5.1 傅里叶积分变换
18.5.2 傅里叶逆变换
18.6 拉普拉斯变换及其逆变换
18.6.1 拉普拉斯变换
18.6.2 拉普拉斯逆变换
计算机仿真编程实践
第19章 数学物理方程的计算机仿真求解
19.1 用偏微分方程工具箱求解偏微分方程
19.1.1 用GUI解PDE问题
19.1.2 计算结果的可视化
19.2 计算机仿真编程求解偏微分方程
19.2.1 双曲型:波动方程的求解
19.2.2 抛物型:热传导方程的求解
19.2.3 椭圆型:稳定场方程的求解
19.2.4 点源泊松方程的适应解
19.2.5 亥姆霍兹方程的求解
19.3 定解问题的计算机仿真显示
19.3.1 波动方程解的动态演示
19.3.2 热传导方程解的分布
19.3.3 泊松方程解的分布
19.3.4 格林函数解的分布
19.3.5 本征值问题中本征函数的分布
计算机仿真编程实践
第20章 特殊函数的计算机仿真应用
20.1 连带勒让德函数、勒让德函数、球函数
20.1.1 连带勒让德函数
20.1.2 勒让德多项式
20.1.3 球函数
20.1.4 勒让德多项式的母函数图形
20.2 贝塞尔函数(柱函数)
20.2.1 贝塞尔函数
20.2.2 虚宗量贝塞尔函数
20.2.3 球贝塞尔函数的图形
20.2.4 平面波用柱面波形式展开
20.2.5 定解问题的图形显示
20.3 其他特殊函数
计算机仿真编程实践
第四篇综合测试题
参考文献

前言/序言


高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024

高等学校教材:数学物理方法与仿真(第2版) 下载 epub mobi pdf txt 电子书 2024

高等学校教材:数学物理方法与仿真(第2版) pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

高等学校教材:数学物理方法与仿真(第2版) mobi pdf epub txt 电子书 下载 2024

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

《高等学校教材:数学物理方法与仿真(第2版)》结构层次清晰,理论具有系统性和完整性,重点立足于对思维能力的培养,加强计算机仿真能力的训练,分别介绍了复变函数、数学物理方程和特殊函数的计算机仿真求解及其解的仿真图形显示。习题解答和仿真程序等可以通过网络下载。

评分

《高等学校教材:数学物理方法与仿真(第2版)》可作为物理学、地球物理学、电子信息科学、光通信技术、空间科学、天文学、地质学、海洋科学、材料科学等学科领域的理工科大学本科教材,也可供相关专业的研究生、科技工作者作为参考资料并进行计算机仿真训练。第一篇 复变函数论复数与复变函数复数概念及其运算

评分

很好的书,慢慢看,京东是个不错的买书地! “知识就是力量”,这是英国著名学者培根说的。诚然,知识对于年青一代何等重要。而知识并非生来就有、随意就生的,最主要的获取途径是靠读书。在读书中,有“甘”也有“苦”。 “活到老,学到老”,这句话简洁而极富哲理地概括了人生的意义。虽说读书如逆水行舟,困难重重,苦不堪言;但是,若将它当作一种乐趣,没有负担,像是策马于原野之上,泛舟于西湖之间,尽欢于游戏之中。这样,读书才津津有味、妙不可言。由此,读书带来的“甘甜”自然而然浮出水面,只等着你采撷了。 读书,若只埋首于“书海”中,长此以往,精神得不到适当地调节,“恹倦”的情绪弥满脑际,到终来不知所云,索然无味。这种“苦”是因人造成的,无可厚非。还有一种人思想上存在着问题,认为读书无关紧要,苦得难熬,活受罪。迷途的羔羊总有两种情况:一种是等待死亡;另一种能回头是岸,前程似锦 我的房间里有一整架书籍,每天独自摩挲大小不一的书,轻嗅清清淡淡的油墨香,心中总是充满一股欢欣与愉悦。取出一册,慢慢翻阅,怡然自得。   古人读书有三味之说,即“读经味如稻梁,读史味如佳肴,诸子百家,味如醯醢”。我无法感悟得如此精深,但也痴书切切,非同寻常。   记得小时侯,一次,我从朋友那儿偶然借得伊索寓言,如获至宝,爱不释手。读书心切,回家后立即关上房门。灯光融融,我倚窗而坐。屋内,灯光昏暗,室外,灯火辉煌,街市嘈杂;我却在书中神游,全然忘我。转眼已月光朦胧,万籁俱寂,不由得染上了一丝睡意。再读两篇才罢!我挺直腰板,目光炯炯有神,神游伊索天国。   迷迷糊糊地,我隐约听到轻柔的叫喊声,我揉了揉惺忪的睡眼,看不真切,定神一听,是妈妈的呼唤,我不知在写字台上趴了多久。妈妈冲着我笑道:“什么时候变得这么用功了?”我的脸火辣辣的,慌忙合书上床,倒头便睡。   从此,读书就是我永远的乐事。外面的世界确实五彩缤纷,青山啊,绿水啊,小鸟啊,小猫啊,什么也没有激发起我情趣,但送走白日时光的我,情由独钟——在幽静的房间里伴一盏灯,手执一卷,神游其中,任思绪如骏马奔腾,肆意驰骋,饱揽异域风情,目睹历史兴衰荣辱。与住人公同悲同喜,与英雄人物共沉共浮,骂可笑可鄙之辈,哭可怜可敬之士。体验感受主人公艰难的生命旅程,品尝咀嚼先哲们睿智和超凡的见解,让理性之光粲然于脑海,照亮我充满荆棘与坎坷之途。在书海中,静静地揣摩人生的快乐,深深地感知命运的多舛,默默地慨叹人世的沧桑。而心底引发阵阵的感动,一股抑制不住的激动和灵感奔涌。于是乎,笔尖不由得颤动起来,急于想写什么,想说什么……   闲暇之余,读书之外,仍想读书寄情于此,欣然自愉。正如东坡老先生所云:“此心安处吾乡。”   早晨,我品香茗读散文,不亦乐乎!中午,我临水倚林读小说,不亦乐乎!晚上,我对窗借光吟诗词,不亦乐乎!整天都是快乐,因为我有书,我在!

评分

不知道怎么样,不过看电子版的额不错

评分

便宜实惠

评分

作者是我的老师哦~~~不过他讲课根本就是在念书。。。。

评分

很好的书,慢慢看,京东是个不错的买书地! “知识就是力量”,这是英国著名学者培根说的。诚然,知识对于年青一代何等重要。而知识并非生来就有、随意就生的,最主要的获取途径是靠读书。在读书中,有“甘”也有“苦”。 “活到老,学到老”,这句话简洁而极富哲理地概括了人生的意义。虽说读书如逆水行舟,困难重重,苦不堪言;但是,若将它当作一种乐趣,没有负担,像是策马于原野之上,泛舟于西湖之间,尽欢于游戏之中。这样,读书才津津有味、妙不可言。由此,读书带来的“甘甜”自然而然浮出水面,只等着你采撷了。 读书,若只埋首于“书海”中,长此以往,精神得不到适当地调节,“恹倦”的情绪弥满脑际,到终来不知所云,索然无味。这种“苦”是因人造成的,无可厚非。还有一种人思想上存在着问题,认为读书无关紧要,苦得难熬,活受罪。迷途的羔羊总有两种情况:一种是等待死亡;另一种能回头是岸,前程似锦 我的房间里有一整架书籍,每天独自摩挲大小不一的书,轻嗅清清淡淡的油墨香,心中总是充满一股欢欣与愉悦。取出一册,慢慢翻阅,怡然自得。   古人读书有三味之说,即“读经味如稻梁,读史味如佳肴,诸子百家,味如醯醢”。我无法感悟得如此精深,但也痴书切切,非同寻常。   记得小时侯,一次,我从朋友那儿偶然借得伊索寓言,如获至宝,爱不释手。读书心切,回家后立即关上房门。灯光融融,我倚窗而坐。屋内,灯光昏暗,室外,灯火辉煌,街市嘈杂;我却在书中神游,全然忘我。转眼已月光朦胧,万籁俱寂,不由得染上了一丝睡意。再读两篇才罢!我挺直腰板,目光炯炯有神,神游伊索天国。   迷迷糊糊地,我隐约听到轻柔的叫喊声,我揉了揉惺忪的睡眼,看不真切,定神一听,是妈妈的呼唤,我不知在写字台上趴了多久。妈妈冲着我笑道:“什么时候变得这么用功了?”我的脸火辣辣的,慌忙合书上床,倒头便睡。   从此,读书就是我永远的乐事。外面的世界确实五彩缤纷,青山啊,绿水啊,小鸟啊,小猫啊,什么也没有激发起我情趣,但送走白日时光的我,情由独钟——在幽静的房间里伴一盏灯,手执一卷,神游其中,任思绪如骏马奔腾,肆意驰骋,饱揽异域风情,目睹历史兴衰荣辱。与住人公同悲同喜,与英雄人物共沉共浮,骂可笑可鄙之辈,哭可怜可敬之士。体验感受主人公艰难的生命旅程,品尝咀嚼先哲们睿智和超凡的见解,让理性之光粲然于脑海,照亮我充满荆棘与坎坷之途。在书海中,静静地揣摩人生的快乐,深深地感知命运的多舛,默默地慨叹人世的沧桑。而心底引发阵阵的感动,一股抑制不住的激动和灵感奔涌。于是乎,笔尖不由得颤动起来,急于想写什么,想说什么……   闲暇之余,读书之外,仍想读书寄情于此,欣然自愉。正如东坡老先生所云:“此心安处吾乡。”   早晨,我品香茗读散文,不亦乐乎!中午,我临水倚林读小说,不亦乐乎!晚上,我对窗借光吟诗词,不亦乐乎!整天都是快乐,因为我有书,我在!

评分

便宜实惠

评分

很难又很容易。。。矛盾死我了。。。。

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

高等学校教材:数学物理方法与仿真(第2版) epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有