微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf  mobi txt 電子書 下載

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024


簡體網頁||繁體網頁
[美] 朗 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-06

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510005404
版次:1
商品編碼:10104514
包裝:平裝
外文名稱:Fundamentals of Differential Geometry
開本:16開
齣版時間:2010-01-01
用紙:膠版紙
頁數:535
正文語種:英語

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

《微分幾何基礎(英文版)》介紹瞭微分拓撲、微分幾何以及微分方程的基本概念。《微分幾何基礎(英文版)》的基本思想源於作者早期的《微分和黎曼流形》,但重點卻從流形的一般理論轉移到微分幾何,增加瞭不少新的章節。這些新的知識為Banach和Hilbert空間上的無限維流形做準備,但一點都不覺得多餘,而優美的證明也讓讀者受益不淺。在有限維的例子中,討論瞭高維微分形式,繼而介紹瞭Stokes定理和一些在微分和黎曼情形下的應用。給齣瞭Laplacian基本公式,展示瞭其在浸入和浸沒中的特徵。書中講述瞭該領域的一些主要基本理論,如:微分方程的存在定理、少數性、光滑定理和嚮量域流,包括子流形管狀鄰域的存在性的嚮量叢基本理論,微積分形式,包括經典2-形式的辛流形基本觀點,黎曼和僞黎曼流形協變導數以及其在指數映射中的應用,Cartan-Hadamard定理和變分微積分一基本定理。目次:(一部分)一般微分方程;微積分;流形;嚮量叢;嚮量域和微分方程;嚮量域和微分形式運算;Frobenius定理;(第二部分)矩陣、協變導數和黎曼幾何:矩陣;協變導數和測地綫;麯率;二重切綫叢的張量分裂;麯率和變分公式;半負麯率例子;自同構和對稱;浸入和浸沒;(第三部分)體積形式和積分:體積形式;微分形式的積分;Stokes定理;Stokes定理的應用;譜理論。

內頁插圖

目錄

Foreword
Acknowledgments
PART Ⅰ
General Differential Theory,
CHAPTER Ⅰ
Oifferenlial Calculus
Categories
Topological Vector Spaces
Derivatives and Composition of Maps
Integration and Taylors Formula
The Inverse Mapping Theorem

CHAPTER Ⅱ
Manifolds
Atlases, Charts, Morphisms
Submanifolds, Immersions, Submersions
Partitions of Unity
Manifolds with Boundary

CHAPTER Ⅲ
Vector Bundles
Definition, Pull Backs
The Tangent Bundle
Exact Sequences of Bundles
Operations on Vector Bundles
Splitting of Vector Bundles

CHAPTER Ⅳ
Vector Fields and Differential Equations
Existence Theorem for Differential Equations .
Vector Fields, Curves, and Flows
Sprays
The Flow of a Spray and the Exponential Map
Existence of Tubular Neighborhoods
Uniqueness of Tubular Neighborhoods

CHAPTER Ⅴ
Operations on Vector Fields and Differential Forms
Vector Fields, Differential Operators, Brackets
Lie Derivative
Exterior Derivative
The Poincar Lemma
Contractions and Lie Derivative
Vector Fields and l-Forms Under Self Duality
The Canonical 2-Form
Darbouxs Theorem

CHAPTER Ⅵ
The Theorem of Frobenius
Statement of the Theorem
Differential Equations Depending on a Parameter
Proof of the Theorem
The Global Formulation
Lie Groups and Subgroups

PART Ⅱ
Metrics, Covariant Derivatives, and Riemannian Geometry

CHAPTER Ⅶ
Metrics
Definition and Functoriality
The Hilbert Group
Reduction to the Hilbert Group
Hilbertian Tubular Neighborhoods
The Morse-Palais Lemma
The Riemannian Distance
The Canonical Spray

CHAPTER Ⅷ
Covariant Derivatives and Geodesics.
Basic Properties
Sprays and Covariant Derivatives
Derivative Along a Curve and Parallelism
The Metric Derivative
More Local Results on the Exponential Map
Riemannian Geodesic Length and Completeness

CHAPTER Ⅸ
Curvature
The Riemann Tensor
Jacobi Lifts
Application of Jacobi Lifts to Texpx
Convexity Theorems
Taylor Expansions

CHAPTER Ⅹ
Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
Convexity of Jacobi Lifts
Global Tubular Neighborhood of a Totally Geodesic Submanifold.
More Convexity and Comparison Results
Splitting of the Double Tangent Bundle
Tensorial Derivative of a Curve in TX and of the Exponential Map
The Flow and the Tensorial Derivative

CHAPTER XI
Curvature and the Variation Formula
The Index Form, Variations, and the Second Variation Formula
Growth of a Jacobi Lift
The Semi Parallelogram Law and Negative Curvature
Totally Geodesic Submanifolds
Rauch Comparison Theorem
CHAPTER XII
An Example of Seminegative Curvature
Pos,,(R) as a Riemannian Manifold
The Metric Increasing Property of the Exponential Map
Totally Geodesic and Symmetric Submanifolds

CHAPTER XIII
Automorphisms and Symmetries.,
The Tensorial Second Derivative
Alternative Definitions of Killing Fields
Metric Killing Fields
Lie Algebra Properties of Killing Fields
Symmetric Spaces
Parallelism and the Riemann Tensor
CHAPTER XlV
Immersions and Submersions .
The Covariant Derivative on a Submanifoid
The Hessian and Laplacian on a Submanifold
The Covariant Derivative on a Riemhnnian Submersion .
The Hessian and Laplacian on a Riemannian Submersion
The Riemann Tensor on Submanifolds
The Riemann Tensor on a Riemannian Submersion

PART III
Volume Forms and Integration
CHAPTER XV
Volume Forms
Volume Forms and the Divergence
Covariant Derivatives
The Jacobian Determinant of the Exponential Map
The Hodge Star on Forms
Hodge Decomposition of Differential Forms
Volume Forms in a Submersion
Volume Forms on Lie Groups and Homogeneous Spaces
Homogeneously Fibered Submersions

CHAPTER XVI
Integration of Differential Forms
Sets of Measure 0
Change of Variables Formula
Orientation
The Measure Associated with a Differential Form
Homogeneous Spaces

CHAPTER XVII
Stokes Theorem
Stokes Theorem for a Rectangular Simplex
Stokes Theorem on a Manifold
Stokes Theorem with Singularities

CHAPTER XVIII
Applications of Stokes Theorem
The Maximal de Rham Cohomology
Mosers Theorem
The Divergence Theorem
The Adjoint of d for Higher Degree Forms
Cauchys Theorem
The Residue Theorem

APPENDIX
The Spectral Theorem,
Hilbert Space
Functionals and Operators
Hermitian Operators
Bibliography
Index

精彩書摘

We shall recall briefly the notion of derivative and some of its usefulproperties. As mentioned in the foreword, Chapter VIII of Dieudonn6sbook or my books on analysis [La 83], [La 93] give a self-contained andcomplete treatment for Banach spaces. We summarize certain factsconcerning their properties as topological vector spaces, and then wesummarize differential calculus. The reader can actually skip this chapterand start immediately with Chapter II if the reader is accustomed tothinking about the derivative of a map as a linear transformation. (In thefinite dimensional case, when bases have been selected, the entries in thematrix of this transformation are the partial derivatives of the map.) Wehave repeated the proofs for the more important theorems, for the ease ofthe reader.
It is convenient to use throughout the language of categories. Thenotion of category and morphism (whose definitions we recall in 1) isdesigned to abstract what is common to certain collections of objects andmaps between them. For instance, topological vector spaces and continuous linear maps, open subsets of Banach spaces and differentiablemaps, differentiable manifolds and differentiable maps, vector bundles andvector bundle maps, topological spaces and continuous maps, sets and justplain maps. In an arbitrary category, maps are called morphisms, and infact the category of differentiable manifolds is of such importance in thisbook that from Chapter II on, we use the word morphism synonymouslywith differentiable map (or p-times differentiable map, to be precise). Allother morphisms in other categories will be qualified by a prefix to in-dicate the category to which they belong.

前言/序言

  The present book aims to give a fairly comprehensive account of thefundamentals of differential manifolds and differential geometry. The sizeof the book influenced where to stop, and there would be enough materialfor a second volume (this is not a threat).
  At the most basic level, the book gives an introduction to the basicconcepts which are used in differential topology, differential geometry, anddifferential equations. In differential topology, one studies for instancehomotopy classes of maps and the possibility of finding suitable differen-tiable maps in them (immersions, embeddings, isomorphisms, etc.). Onemay also use differentiable structures on topological manifolds to deter-mine the topological structure of the manifold (for example, h ia Smale[Sin 67]). In differential geometry, one puts an additional structure on thedifferentiable manifold (a vector field, a spray, a 2-form, a Riemannianmetric, ad lib.) and studies properties connected especially with theseobjects. Formally, one may say that one studies properties invariant underthe group of differentiable automorphisms which preserve the additionalstructure. In differential equations, one studies vector fields and their in-tegral curves, singular points, stable and unstable manifolds, etc. A certainnumber of concepts are essential for all three, and are so basic and elementarythat it is worthwhile to collect them together so that more advanced expositionscan be given without having to start from the very beginnings.
  Those interested in a brief introduction could run through Chapters II,III, IV, V, VII, and most of Part III on volume forms, Stokes theorem,and integration. They may also assume all manifolds finite dimensional.

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] 下載 epub mobi pdf txt 電子書

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] mobi pdf epub txt 電子書 下載 2024

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

給力

評分

1854年德國數學傢黎曼(B. Riemann)在他的就職演講(Habilitationsschrift)中將高斯的理論推廣到n維空間,這就是黎曼幾何的誕生。其後許多數學傢,包括E. Beltrami, E. B. Christoffel,R. Lipschitz,L. Bianchi,T. Ricci開始沿著黎曼的思路進行研究。其中Bianchi是第一個將“微分幾何”作為書名的作者。

評分

評分

GTM係列,基本上都是精品!本書內容豐富,還有無限維空間的幾何!

評分

   加點八卦,其實梁老師是這樣說的,他說S.Hawking當年的那本《大尺度》是本天書,R.Wald(梁老師的導師)為瞭讓更多的學者能夠理解 Hawking的天書,寫瞭本《General relativity》,後來這本書也成為一代經典,梁老師說他為瞭讓更多的學生(甚至本科生)理解Wald的書,纔寫瞭他本人這套書,這套書本來是英文版的,後來適閤國情纔改成中文版的。還有一位Wald的學生Sean Carroll也寫瞭一本Wald書的過渡版《spacetime and geometry》。如果你讀梁老師書,這本也可以看看。嗬嗬。

評分

好書,送貨較快

評分

起源

評分

還可以的呀還可以的呀

評分

微分幾何的産生和發展是和微積分密切相連的。在這方麵第一個做齣貢獻的是瑞士數學傢歐拉(L.Euler)。1736年他首先引進瞭平麵麯綫的內在坐標這一概念,即以麯綫弧長這一幾何量作為麯綫上點的坐標,從而開始瞭麯綫的內在幾何的研究。十九世紀初,法國數學傢濛日(G. Monge)首先把微積分應用到麯綫和麯麵的研究中去,並於1807年齣版瞭他的《分析在幾何學上的應用》一書,這是微分幾何最早的一本著作。在這些研究中,可以看到力學、物理學與工業的日益增長的要求是促進微分幾何發展的因素。

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024

类似图書 點擊查看全場最低價

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2024


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有