内容简介
《伽罗瓦理论(第2版)(英文版)》是第二版,较一版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。《伽罗瓦理论(第2版)(英文版)》是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和大理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;判别式;二次、三次、四次多项式的Galois群;结尾。
内页插图
目录
Preface to the Second Edition
Preface to the First Edition
To the Reader
Symmetry
Rings
Domains and Fields
Homomorphisms and Ideals
Quotient Rings
Polynomial Rings over Fields
Prime Ideals and Maximal Ideals
Irreducible Polynomials
Classical Formulas
Splitting Fields
The Galois Group
Roots of Unity
Solvability by Radicals
Independence of Characters
Galois Extensions
The Fundamental Theorem of Galois Theory
前言/序言
There are too many errors in the first edition, and so a "corrected nth printing" would have been appropriate. However, given the opportunity to makechanges, I felt that a second edition would give me the flexibility to changeany portion of the text that I felt I could improve. The first edition aimedto give a geodesic path to the Fundamental Theorem of Galois Theory,and I still think its brevity is valuable. Alas, the book is now a bit longer,but I feel that the changes are worthwhile. I began by rewriting almost allthe text, trying to make proofs clearer, and often giving more details thanbefore. Since many students find the road to the Fundamental Theoreman intricate one, the book now begins with a short section on symmetrygroups of polygons in the plane; an analogy of polygons and their symmetry groups with polynomials and their Galois groups can serve as a guideby helping readers organize the various definitions and constructions. Theexposition has been reorganized so that the discussion of solvability byradicals now appears later; this makes the proof of the Abel-Ruffini theorem easier to digest. I have also included several theorems not in the firstedition. For example, the Casus Irreducibilis is now proved, in keepingwith a historical interest lurking in these pages.
I am indebted to Gareth Jones at the University of Southampton who,after having taught a course with the first edition as text, sent me a detailed list of errata along with perspicacious comments and suggestions. Ialso thank Evan Houston, Adam Lewenberg, and Jack Shamash who madevaluable comments as well. This new edition owes much to the generosityof these readers, and I am grateful to them.
伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] epub pdf mobi txt 电子书 下载 2024
伽罗瓦理论(第2版)(英文版) [Galois Theory 2nd ed] 下载 epub mobi pdf txt 电子书 2024
评分
☆☆☆☆☆
非常好的书,快递给力,赞!
评分
☆☆☆☆☆
还行的教材,瞎看吧。
评分
☆☆☆☆☆
比较薄,放在床头,没事的时候看看,也算是回顾大学时光,伽罗华理论的中文与英文书籍都较多。
评分
☆☆☆☆☆
伽罗瓦理论,Rotman著~
评分
☆☆☆☆☆
配送快!!赞!!!
评分
☆☆☆☆☆
评分
☆☆☆☆☆
《伽罗瓦理论(第2版)(英文版)》是第二版,较第一版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。《伽罗瓦理论(第2版)(英文版)》是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和最大理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;判别式;二次、三次、四次多项式的Galois群;结尾。《伽罗瓦理论(第2版)(英文版)》是第二版,较第一版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。《伽罗瓦理论(第2版)(英文版)》是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和最大理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;判别式;二次、三次、四次多项式的Galois群;结尾。《伽罗瓦理论(第2版)(英文版)》是第二版,较第一版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。《伽罗瓦理论(第2版)(英文版)》是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和最大理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;判别式;二次、三次、四次多项式的Galois群;结尾。
评分
☆☆☆☆☆
正版,发货快
评分
☆☆☆☆☆
正版的,非常值,快递也给力,必须给好评,就是感觉包装有点简陋啊哈哈不过书很好,看了下内容也都很不错,快递也很给力,东西很好物流速度也很快,和照片描述的也一样,给个满分吧下次还会来买。伽罗瓦理论,用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。