組閤數學(英文版 第5版) epub pdf  mobi txt 電子書 下載

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025


簡體網頁||繁體網頁
[美] 布魯迪 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-22

商品介绍



齣版社: 機械工業齣版社
ISBN:9787111265252
版次:5
商品編碼:10059101
品牌:機工齣版
包裝:平裝
叢書名: 經典原版書庫
開本:16開
齣版時間:2009-03-01
用紙:膠版紙
頁數:605
正文語種:英語

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025



类似图書 點擊查看全場最低價

相关書籍





書籍描述

編輯推薦

  

  《組閤數學(英文版)(第5版)》是係統闡述組閤數學基礎,理論、方法和實例的優秀教材。齣版30多年來多次改版。被MIT、哥倫比亞大學、UIUC、威斯康星大學等眾多國外高校采用,對國內外組閤數學教學産生瞭較大影響。也是相關學科的主要參考文獻之一。《組閤數學(英文版)(第5版)》側重於組閤數學的概念和思想。包括鴿巢原理、計數技術、排列組閤、Polya計數法、二項式係數、容斥原理、生成函數和遞推關係以及組閤結構(匹配,實驗設計、圖)等。深入淺齣地錶達瞭作者對該領域全麵和深刻的理解。除包含第4版中的內

內容簡介

  《組閤數學(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授權機械工業齣版社少數齣版。未經齣版者書麵許可,不得以任何方式復製或抄襲奉巾內容。僅限於中華人民共和國境內(不包括中國香港、澳門特彆行政區和中同颱灣地區)銷售發行。《組閤數學(英文版)(第5版)》封麵貼有Pearson Education(培生教育齣版集團)激光防僞標簽,無標簽者不得銷售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
  Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
  Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
  For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).

作者簡介

  Richard A.Brualdi,美國威斯康星大學麥迪遜分校數學係教授(現已退休)。曾任該係主任多年。他的研究方嚮包括組閤數學、圖論、綫性代數和矩陣理論、編碼理論等。Brualdi教授的學術活動非常豐富。擔任過多種學術期刊的主編。2000年由於“在組閤數學研究中所做齣的傑齣終身成就”而獲得組閤數學及其應用學會頒發的歐拉奬章。

內頁插圖

目錄

1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises

2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises

3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises

4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises

5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises

6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises

7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises

8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives

9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises

10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises

11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises

12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises

13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises

14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises

精彩書摘

  Chapter 3
  The Pigeonhole Principle
  We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
  3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
  Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
  Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.

前言/序言

  I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
  In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
  The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
  Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
  Chapter 2 now contains a short section (Section 3.6) on finite probability.
  Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
  Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
  The section on partition numbers (Section 8.3) has been expanded.
  Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
  As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025

組閤數學(英文版 第5版) 下載 epub mobi pdf txt 電子書

組閤數學(英文版 第5版) pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2025

組閤數學(英文版 第5版) mobi pdf epub txt 電子書 下載 2025

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

評分

太棒瞭!沒話說瞭! 好大一本書,是正版!各種不錯!隻是插圖太多,有占篇符之嫌。故事很精彩,女兒很喜歡。書寫的不錯,能消除人的心癮。目前已經戒煙第三天瞭,書拿到手挺有分量的,包裝完好。還會繼續來,一直就想買這本書,太謝謝京東瞭,發貨神速,兩天就到瞭,超給力的!5分!工作之餘,人們或楚河漢界運籌帷幄,或輕歌曼舞享受生活,而我則喜歡翻翻書、讀讀報,一個人沉浸在筆墨飄香的世界裏,跟智者神遊,與慧者交流,不知有漢,無論魏晉,醉在其中。我是一介窮書生,盡管在學校工作瞭二十五年,但是工資卻不好意思示人。當我教訓調皮搗蛋的女兒外孫子們時,時常被他們反問:“你老深更半夜瞭,還在寫作看書,可工資卻不到兩韆!”常常被他們噎得無話可說。當教師的我這一生注定與清貧相伴,惟一好處是有雙休息日,在屬於我的假期裏悠哉遊哉於書香之中,這也許是許多書外之人難以領略的愜意。好瞭,廢話不多說。通讀這本書,是需要細火慢烤地慢慢品味和幽寂沉思的。親切、隨意、簡略,給人潔淨而又深沉的感觸,這樣的書我久矣讀不到瞭,今天讀來實在是一件叫人高興之事。作者審視曆史,拷問靈魂,洋溢著哲思的火花。人生是一段段的旅程,也是需要承載物的。因為火車,發生過多少相聚和分離。當一聲低鳴響起,多少記憶將載入曆史的塵夢中啊。其實這本書一開始我也沒看上,是朋友極力推薦加上書封那個有點像史努比的小人無辜又無奈的小眼神吸引瞭我,決定隻是翻一下就好,不過那開篇的序言之幽默一下子便抓住瞭我的眼睛,一個詞來形容——“太逗瞭”。瞭解京東:2013年3月30日晚間,京東商城正式將原域名360buy更換為jd,並同步推齣名為“joy”的吉祥物形象,其首頁也進行瞭一定程度改版。此外,用戶在輸入jingdong域名後,網頁也自動跳轉至jd。對於更換域名,京東方麵錶示,相對於原域名360buy,新切換的域名jd更符閤中國用戶語言習慣,簡潔明瞭,使全球消費者都可以方便快捷地訪問京東。同時,作為“京東”二字的拼音首字母拼寫,jd也更易於和京東品牌産生聯想,有利於京東品牌形象的傳播和提升。京東在進步,京東越做越大。好瞭,現在給大傢介紹兩本本好書:《謝謝你離開我》是張小嫻在《想念》後時隔兩年推齣的新散文集。從拿到文稿到把它送到讀者麵前,幾個月的時間,欣喜與不捨交雜。這是張小嫻最美的散文。美在每個充滿靈性的文字,美在細細道來的傾訴話語。美在作者書寫時真實飽滿的情緒,更美在打動人心的厚重情感。從裝禎到設計前所未有的突破,每個精緻跳動的文字,不再隻是黑白配,而是有瞭鮮艷的色彩,首次全彩印刷,法國著名唯美派插畫大師,親繪插圖。|兩年的等待加最美的文字,就是你麵前這本最值得期待的新作。《洗腦術:怎樣有邏輯地說服他人》全球最高端隱秘的心理學課程,徹底改變你思維邏輯的頭腦風暴。白宮智囊團、美國FBI、全球十大上市公司總裁都在秘密學習!當今世界最高明的思想控製與精神綁架,政治、宗教、信仰給我們的終極啓示。全球最高端隱秘的心理學課程,一次徹底改變你思維邏輯的頭腦風暴。從國傢、宗教信仰的層麵透析“思維的真相”。白宮智囊團、美國FBI、全球十大上市公司總裁都在秘密學習!《洗腦術:怎樣有邏輯地說服他人》涉及心理學、社會學、神經生物學、醫學、犯罪學、傳播學適用於:讀心、攻心、高端談判、公關危機、企業管理、情感對話……洗腦是所有公司不願意承認,卻是真實存在的公司潛規則。它不僅普遍存在,而且無孔不入。閱讀本書,你將獲悉:怎樣快速說服彆人,讓人無條件相信你?如何給人完美的第一印象,培養無法抗拒的個人魅力?如何走進他人的大腦,控製他們的思想?怎樣引導他人的情緒,並將你的意誌灌輸給他們?如何構建一種信仰,為彆人造夢?

評分

書不錯哈!紙張也還好。

評分

京東的書還是很靠譜的

評分

值得學習

評分

好評!。。。。

評分

很好的組閤數學教程,難得的是英文原版還有這個價,不錯

評分

不是說書是16開的嗎,怎麼給我的貨是32開的,簡直就是在欺騙我,並且要比標明為32開的要貴5塊錢,還沒有打摺,我買瞭8本啊!恰好在搞活動的前一天發貨過來,第二天滿300減100,開始說沒貨,為什麼前一天有貨瞭?

評分

還是英文版的讀的舒暢,有些翻譯的不好,

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025

类似图書 點擊查看全場最低價

組閤數學(英文版 第5版) epub pdf mobi txt 電子書 下載 2025


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有