复变函数及应用(英文版)(第8版) epub pdf  mobi txt 电子书 下载

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
布朗(James Ward Brown) 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-25

商品介绍



出版社: 机械工业出版社
ISBN:9787111253631
版次:1
商品编码:10058845
品牌:机工出版
包装:平装
丛书名: 经典原版书库
开本:16开
出版时间:2009-03-01
页数:468
正文语种:英语

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

《复变函数及应用(英文版)(第8版)》初版于20世纪40年代,是经典的本科数学教材之一,对复变函数的教学影响深远,被美国加州理工学院、加州大学伯克利分校、佐治亚理工学院、普度大学、达特茅斯学院、南加州大学等众多名校采用。
《复变函数及应用(英文版)(第8版)》阐述了复变函数的理论及应用,还介绍了留数及保形映射理论在物理、流体及热传导等边值问题中的应用。
新版对原有内容进行了重新组织,增加了更现代的示例和应用,更加方便教学。

作者简介

James Ward Brown密歇根大学迪尔本分校数学系教授,美国数学学会会员。1964年于密歇根大学获得数学博士学位。他曾经主持研究美国国家自然科学基金项目,获得过密歇根大学杰出教师奖,并被列入美国名人录。
Ruel V.Churchill已故密歇根大学知名教授。早在60多年前,就开始编写一系列经典教材。除本书外,还与James Ward Brown合著《Fourier Series and Boundary Value Problems》。

目录

Preface
1 Complex Numbers
Sums and Products
Basic Algebraic Properties
Further Properties
Vectors and Moduli
Complex Conjugates
Exponential Form
Products and Powers in Exponential Form
Arguments of Products and Quotients
Roots of Complex Numbers
Examples
Regions in the Complex Plane

2 Analytic Functions
Functions of a Complex Variable
Mappings
Mappings by the Exponential Function
Limits
Theorems on Limits
Limits Involving the Point at Infinity
Continuity
Derivatives
Differentiation Formulas
Cauchy-Riemann Equations
Sufficient Conditions for Differentiability
Polar Coordinates
Analytic Functions
Examples
Harmonic Functions
Uniquely Determined Analytic Functions
Reflection Principle

3 Elementary Functions
The Exponential Function
The Logarithmic Function
Branches and Derivatives of Logarithms
Some Identities Involving Logarithms
Complex Exponents
Trigonometric Functions
Hyperbolic Functions
Inverse Trigonometric and Hyperbolic Functions

4 Integrals
Derivatives of Functions w(t)
Definite Integrals of Functions w(t)
Contours
Contour Integrals
Some Examples
Examples with Branch Cuts
Upper Bounds for Moduli of Contour Integrals
Antiderivatives
Proof of the Theorem
Cauchy-Goursat Theorem
Proof of-the Theorem
Simply Connected Domains
Multiply Connected Domains
Cauchy Integral Formula
An Extension of the Cauchy Integral Formula
Some Consequences of the Extension
Liouvilles Theorem and the Fundamental Theorem of Algebra
Maximum Modulus Principle

5 Series
Convergence of Sequences
Convergence of Series
Taylor Series
ProofofTaylors Theorem
Examples
Laurent Series
ProofofLaurents 111eorem
Examples
Absolute and Uniform Convergence of Power Series
Continuity of Sums of Power Series
Integration and Differentiation ofPower Series
Uniqueness of Series Representations
Multiplication and Division of Power Series

6 Residues and Poles
Isolated Singular Poims
Residues
Cauchys Residue Theorem
Residue at Infinity
The Three Types of Isolated Singular Points
ResiduCS at POles
Examples
Zeros of Analytic Functions
Zeros and Poles
Behavior of Functions Near Isolated Singular Points

7 Applications of Residues
Evaluation of Improper Integrals
Example
Improper Integrals from Fourier Analysis
Jordans Lemma
Indented Paths
An Indentation Around a Branch P0int
Integration Along a Branch Cut
Definite Integrals Involving Sines and Cosines
Argument Principle
Rouch6s Theorem
Inverse Laplace Transforms
Examples

8 Mapping by Elementary Functions
Linear Transformations
The TransfoITnation w=1/Z
Mappings by 1/Z
Linear Fractional Transformations
An Implicit Form
Mappings ofthe Upper HalfPlane
The Transformation w=sinZ
Mappings by z2 and Branches of z1/2
Square Roots of Polynomials
Riemann Surfaces
Surfaces forRelatedFuncfions
9 Conformal Mapping
10 Applications of Conformal Mapping
11 The Schwarz-Chrstoffer Transformation
12 Integral Formulas of the Poisson Type
Appendixes
Index

精彩书摘

The first objective of.the book is to develop those parts of the theory that areprominent in applications of the subject. The second objective is to furnish an intro-duction to applications of residues and conformal mapping. With regard to residues,special emphasis is given to their use in evaluating real improper integrals, findinginverse Laplace transforms, and locating zeros of functions. As for conformal map-ping, considerable attention is paid to its use in solving boundary value problemsthat arise in studies of heat conduction and fluid flow. Hence the book may beconsidered as a companion volume to the authors text "Fourier Series and Bound-ary Value Problems," where another classical method for solving boundary valueproblems in partial differential equations is developed.
The first nine chapters of this book have for many years formed the basis of athree-hour course given each term at The University of Michigan. The classes haveconsisted mainly of seniors and graduate students concentrating in mathematics,engineering, or one of the physical sciences. Before taking the course, the studentshave completed at least a three-term calculus sequence and a first course in ordinarydifferential equations. Much of the material in the book need not be covered in thelectures and can be left for self-study or used for reference.

前言/序言

  This book is a revision of the seventh edition, which was published in 2004. Thatedition has served, just as the earlier ones did, as a textbook for a oneterm introductory course in the theory and application of functions of a complex variable.This new edition preserves the basic content and style of the earlier editions, thefirst two of which were written by the late Ruel V. Churchill alone.
  The first objective of.the book is to develop those parts of the theory that areprominent in applications of the subject. The second objective is to furnish an introduction to applications of residues and conformal mapping. With regard to residues,special emphasis is given to their use in evaluating real improper integrals, findinginverse Laplace transforms, and locating zeros of functions. As for conformal mapping, considerable attention is paid to its use in solving boundary value problemsthat arise in studies of heat conduction and fluid flow. Hence the book may beconsidered as a companion volume to the authors text "Fourier Series and Boundary Value Problems," where another classical method for solving boundary valueproblems in partial differential equations is developed.
  The first nine chapters of this book have for many years formed the basis of athreehour course given each term at The University of Michigan. The classes haveconsisted mainly of seniors and graduate students concentrating in mathematics,engineering, or one of the physical sciences. Before taking the course, the studentshave completed at least a threeterm calculus sequence and a first course in ordinarydifferential equations. Much of the material in the book need not be covered in thelectures and can be left for selfstudy or used for reference. If mapping by elementaryfunctions is desired earlier in the course, one can skip to Chap. 8 immediately afterChap. 3 on elementary functions.

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024

复变函数及应用(英文版)(第8版) 下载 epub mobi pdf txt 电子书 2024

复变函数及应用(英文版)(第8版) pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

复变函数及应用(英文版)(第8版) mobi pdf epub txt 电子书 下载 2024

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。

评分

内容上是比较实用的一本复变的教材,但装订有点不够牢固,有一些页脱页了

评分

恕我直言,手纸也能印书??

评分

复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。

评分

可以

评分

评分

经典的国外教材,质量很不错的

评分

非常好的图书 物有所值

评分

复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

复变函数及应用(英文版)(第8版) epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有