R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 epub pdf mobi txt 电子书 下载 2024
发表于2024-11-16
R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 epub pdf mobi txt 电子书 下载 2024
本书注重实用性,是一本全面而细致的R指南,高度概括了该软件和它的强大功能,展示了使用的统计示例,且对于难以用传统方法处理的凌乱、不完整和非正态的数据给出了优雅的处理方法。作者不仅仅探讨统计分析,还阐述了大量探索和展示数据的图形功能。新版做了大量更新和修正,新增了近200页内容,介绍数据挖掘、预测性分析和*级编程。
本书适合数据分析人员及R 用户学习参考
Robert I. Kabacoff
R语言社区**名学习网站Quick-R的维护者,现为全球化开发与咨询公司Management研究集团研发副总裁。此前,Kabacoff博士是佛罗里达诺瓦东南大学的教授,讲授定量方法和统计编程的研究生课程。Kabacoff还是临床心理学博士、统计顾问,擅长数据分析,在健康、金融服务、制造业、行为科学、政府和学术界有20余年的研究和统计咨询经验。
“对于所有使用R语言进行数据分析的人来讲,本书都是必不可少的,不论用于业内实践还是学术研究。”
——Cristofer Weber,NeoGrid软件架构师
“一般R语言问题与许多统计学问题的*选参考。”
——George Gaines,KYOS Systems公司&席运营官
“语言易懂,示例真实,代码清晰。”
——Samuel D. McQuillin,休斯顿大学心理学院助理教授
“为R语言初学者提供了柔和的学习曲线。”
——Indrajit Sen Gupta, 就职于Mu Sigma数据分析公司
*一部分 入门
*1章 R语言介绍 3
1.1 为何要使用R 4
1.2 R的获取和安装 6
1.3 R的使用 6
1.3.1 新手上路 7
1.3.2 获取帮助 10
1.3.3 工作空间 10
1.3.4 输入和输出 12
1.4 包 13
1.4.1 什么是包 14
1.4.2 包的安装 14
1.4.3 包的载入 14
1.4.4 包的使用方法 14
1.5 批处理 15
1.6 将输出用为输入:结果的重用 16
1.7 处理大数据集 16
1.8 示例实践 16
1.9 小结 18
*2章 创建数据集 19
2.1 数据集的概念 19
2.2 数据结构 20
2.2.1 向量 21
2.2.2 矩阵 22
2.2.3 数组 23
2.2.4 数据框 24
2.2.5 因子 27
2.2.6 列表 28
2.3 数据的输入 30
2.3.1 使用键盘输入数据 31
2.3.2 从带分隔符的文本文件导入数据 32
2.3.3 导入Excel数据 35
2.3.4 导入XML数据 36
2.3.5 从网页抓取数据 36
2.3.6 导入SPSS数据 36
2.3.7 导入SAS数据 37
2.3.8 导入Stata数据 37
2.3.9 导入NetCDF数据 38
2.3.10 导入HDF5数据 38
2.3.11 访问数据库管理系统 38
2.3.12 通过Stat/Transfer导入数据 40
2.4 数据集的标注 40
2.4.1 变量标签 40
2.4.2 值标签 41
2.5 处理数据对象的实用函数 41
2.6 小结 42
第3章 图形初阶 43
3.1 使用图形 43
3.2 一个简单的例子 45
3.3 图形参数 46
3.3.1 符号和线条 47
3.3.2 颜色 49
3.3.3 文本属性 50
3.3.4 图形尺寸与边界尺寸 51
3.4 添加文本、自定义坐标轴和图例 53
3.4.1 标题 54
3.4.2 坐标轴 54
3.4.3 参考线 56
3.4.4 图例 57
3.4.5 文本标注 58
3.4.6 数学标注 60
3.5 图形的组合 61
3.6 小结 67
第4章 基本数据管理 68
4.1 一个示例 68
4.2 创建新变量 70
4.3 变量的重编码 71
4.4 变量的重命名 72
4.5 缺失值 74
4.5.1 重编码某些值为缺失值 74
4.5.2 在分析中排除缺失值 75
4.6 日期值 76
4.6.1 将日期转换为字符型变量 77
4.6.2 更进一步 78
4.7 类型转换 78
4.8 数据排序 79
4.9 数据集的合并 79
4.9.1 向数据框添加列 79
4.9.2 向数据框添加行 80
4.10 数据集取子集 80
4.10.1 选入(保留)变量 80
4.10.2 剔除(丢弃)变量 81
4.10.3 选入观测 82
4.10.4 subset()函数 82
4.10.5 随机抽样 83
4.11 使用SQL语句操作数据框 83
4.12 小结 84
第5章 *级数据管理 85
5.1 一个数据处理难题 85
5.2 数值和字符处理函数 86
5.2.1 数学函数 86
5.2.2 统计函数 87
5.2.3 概率函数 90
5.2.4 字符处理函数 92
5.2.5 其他实用函数 94
5.2.6 将函数应用于矩阵和数据框 95
5.3 数据处理难题的一套解决方案 96
5.4 控制流 100
5.4.1 重复和循环 100
5.4.2 条件执行 101
5.5 用户自编函数 102
5.6 整合与重构 104
5.6.1 转置 104
5.6.2 整合数据 105
5.6.3 reshape2包 106
5.7 小结 108
*二部分 基本方法
第6章 基本图形 110
6.1 条形图 110
6.1.1 简单的条形图 111
6.1.2 堆砌条形图和分组条形图 112
6.1.3 均值条形图 113
6.1.4 条形图的微调 114
6.1.5 棘状图 115
6.2 饼图 116
6.3 直方图 118
6.4 核密度图 120
6.5 箱线图 122
6.5.1 使用并列箱线图进行跨组比较 123
6.5.2 小提琴图 125
6.6 点图 127
6.7 小结 129
第7章 基本统计分析 130
7.1 描述性统计分析 131
7.1.1 方法云集 131
7.1.2 更多方法 132
7.1.3 分组计算描述性统计量 134
7.1.4 分组计算的扩展 135
7.1.5 结果的可视化 137
7.2 频数表和列联表 137
7.2.1 生成频数表 137
7.2.2 独立性检验 143
7.2.3 相关性的度量 144
7.2.4 结果的可视化 145
7.3 相关 145
7.3.1 相关的类型 145
7.3.2 相关性的显著性检验 147
7.3.3 相关关系的可视化 149
7.4 t 检验 149
7.4.1 独立样本的t 检验 150
7.4.2 非独立样本的t检验 151
7.4.3 多于两组的情况 151
7.5 组间差异的非参数检验 152
7.5.1 两组的比较 152
7.5.2 多于两组的比较 153
7.6 组间差异的可视化 155
7.7 小结 155
第三部分 中级方法
第8章 回归 158
8.1 回归的多面性 159
8.1.1 OLS回归的适用情境 159
8.1.2 基础回顾 160
8.2 OLS回归 160
8.2.1 用lm()拟合回归模型 161
8.2.2 简单线性回归 163
8.2.3 多项式回归 164
8.2.4 多元线性回归 167
8.2.5 有交互项的多元线性回归 169
8.3 回归诊断 171
8.3.1 标准方法 172
8.3.2 改进的方法 175
8.3.3 线性模型假设的综合验证 181
8.3.4 多重共线性 181
8.4 异常观测值 182
8.4.1 离群点 182
8.4.2 高杠杆值点 182
8.4.3 强影响点 184
8.5 改进措施 186
8.5.1 删除观测点 186
8.5.2 变量变换 187
8.5.3 增删变量 188
8.5.4 尝试其他方法 188
8.6 选择“*佳”的回归模型 189
8.6.1 模型比较 189
8.6.2 变量选择 190
8.7 深层次分析 193
8.7.1 交叉验证 193
8.7.2 相对重要性 195
8.8 小结 197
第9章 方差分析 198
9.1 术语速成 198
9.2 ANOVA模型拟合 201
9.2.1 aov()函数 201
9.2.2 表达式中各项的顺序 202
9.3 单因素方差分析 203
9.3.1 多重比较 204
9.3.2 评估检验的假设条件 206
9.4 单因素协方差分析 208
9.4.1 评估检验的假设条件 209
9.4.2 结果可视化 210
9.5 双因素方差分析 211
9.6 重复测量方差分析 214
9.7 多元方差分析 217
9.7.1 评估假设检验 218
9.7.2 稳健多元方差分析 220
9.8 用回归来做ANOVA 220
9.9 小结 222
*10章 功效分析 223
10.1 假设检验速览 223
10.2 用pwr包做功效分析 225
10.2.1 t检验 226
10.2.2 方差分析 228
10.2.3 相关性 228
10.2.4 线性模型 229
10.2.5 比例检验 230
10.2.6 卡方检验 231
10.2.7 在新情况中选择合适的效应值 232
10.3 绘制功效分析图形 233
10.4 其他软件包 235
10.5 小结 236
*11章 中级绘图 237
11.1 散点图 238
11.1.1 散点图矩阵 240
11.1.2 高密度散点图 242
11.1.3 三维散点图 244
11.1.4 旋转三维散点图 247
11.1.5 气泡图 248
11.2 折线图 250
11.3 相关图 253
11.4 马赛克图 258
11.5 小结 260
*12章 重抽样与自助法 261
12.1 置换检验 261
12.2 用coin包做置换检验 263
12.2.1 独立两样本和K 样本检验 264
12.2.2 列联表中的独立性 266
12.2.3 数值变量间的独立性 266
12.2.4 两样本和K 样本相关性检验 267
12.2.5 深入探究 267
12.3 lmPerm包的置换检验 267
12.3.1 简单回归和多项式回归 268
12.3.2 多元回归 269
12.3.3 单因素方差分析和协方差分析 270
12.3.4 双因素方差分析 271
12.4 置换检验点评 271
12.5 自助法 272
12.6 boot包中的自助法 272
12.6.1 对单个统计量使用自助法 274
12.6.2 多个统计量的自助法 276
12.7 小结 278
第四部分 *级方法
*13章 广义线性模型 280
13.1 广义线性模型和glm()函数 281
13.1.1 glm()函数 281
13.1.2 连用的函数 282
13.1.3 模型拟合和回归诊断 283
13.2 Logistic回归 284
13.2.1 解释模型参数 286
13.2.2 评价预测变量对结果概率的影响 287
13.2.3 过度离势 288
13.2.4 扩展 289
13.3 泊松回归
R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 epub pdf mobi txt 电子书 下载 2024
R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 下载 epub mobi pdf txt 电子书 2024R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 mobi pdf epub txt 电子书 下载 2024
R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 epub pdf mobi txt 电子书 下载评分
评分
评分
评分
评分
评分
评分
评分
R语言实战:第2版 用R轻松实现数据挖掘、数据可视化 epub pdf mobi txt 电子书 下载 2024