數值分析Numerical Analysis(第2版) epub pdf  mobi txt 電子書 下載

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024


簡體網頁||繁體網頁
蘇岐芳 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-27

商品介绍



齣版社: 中國鐵道齣版社
ISBN:9787113228002
版次:2
商品編碼:12179634
包裝:平裝
開本:16開
齣版時間:2017-02-01
用紙:膠版紙
頁數:344
字數:431

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024



类似图書 點擊查看全場最低價

相关書籍





書籍描述

編輯推薦

本書采用中、英兩種語言編寫,各章都配有大量的習題及上機實驗題目,並附有部分習題的參考答案及數學專業軟件Mathematica和Matlab的簡介。

內容簡介

本書介紹瞭科學計算中常用數值分析的基礎理論及計算機實現方法。主要內容包括:誤差分析、插值、函數逼近、數值積分和數值微分、非綫性方程的數值解法、綫性方程組的直接解法、綫性方程組的迭代解法、常微分方程的數值解法及相應的上機實驗內容等。各章都配有大量的習題及上機實驗題目,並附有部分習題的參考答案及數學專業軟件Mathematica和Matlab的簡介。
本書采用中、英兩種語言編寫,適閤作為數學、計算機和其他理工類各專業本科“數值分析(計算方法)”雙語課程的教材或參考書,也可供從事科學計算的相關技術人員參考。

作者簡介

蘇岐芳,副教授,颱州學院數學與信息工程學院副院長

目錄

1 Error Analysis ......1
1.1 Introduction ............ 1
1.2 Sources of Errors .... 2
1.3 Errors and Significant Digits .......... 4
1.4 Error Propagation ... 8
1.5 Qualitative Analysis and Control of Errors ............ 9
1.5.1 Ill-condition Problem and Condition Number....................... 9
1.5.2 The Stability of Algorithm .. 10
1.5.3 The Control of Errors .......... 11
1.6 Computer Experiments................. 14
1.6.1 Functions Needed in the Experiments by Mathematica ...... 14
1.6.2 Experiments by Mathematica...................... 14
1.6.3 Functions Needed in the Experiments by Matlab................ 16
1.6.4 Experiments by Matlab ....... 16
Exercises 1..................... 17
2 Interpolating.......19
2.1 Introduction .......... 20
2.2 Basic Concepts ..... 21
2.3 Lagrange Interpolation ................. 22
2.3.1 Linear and Parabolic Interpolation .............. 22
2.3.2 Lagrange Interpolation Polynomial............. 24
2.3.3 Interpolation Remainder and Error Estimate....................... 25
2.4 Divided-differences and Newton Interpolation .... 29
2.5 Differences and Newton Difference Formulae..... 33
2.5.1 Differences .. 33
2.5.2 Newton Difference Formulae ...................... 35
2.6 Hermite Interpolation ................... 38
2.7 Piecewise Low Degree Interpolation.................... 42
2.7.1 Ill-posed Properties of High Degree Interpolation .............. 42
2.7.2 Piecewise Linear Interpolation .................... 43
2.7.3 Piecewise Cubic Hermite Interpolation....... 44
2.8 Cubic Spline Interpolation............ 45
2.8.1 Definition of Cubic Spline... 45
2.8.2 The Construction of Cubic Spline ............... 46
2.9 Computer Experiments................. 49
2.9.1 Functions Needed in the Experiments by Mathematica ...... 49
2.9.2 Experiments by Mathematica...................... 50
2.9.3 Experiments by Matlab ....... 56
Exercises 2................... 64
3 Best Approximation ...................68
3.1 Introduction .......... 68
3.2 Norms ................... 69
3.2.1 Vector Norms ...................... 69
3.2.2 Matrix Norms ...................... 74
3.3 Spectral Radius..... 76
3.4 Best Linear Approximation .......... 79
3.4.1 Basic Concepts and Theories....................... 79
3.4.2 Best Linear Approximation . 81
3.5 Discrete Least Squares Approximation ................ 82
3.6 Least Squares Approximation and Orthogonal Polynomials........ 87
3.7 Rational Function Approximation 94
3.7.1 Continued Fractions ............ 94
3.7.2 Padé Approximation............ 97
3.8 Computer Experiments................. 99
3.8.1 Functions Needed in The Experiments by Mathematica..... 99
3.8.2 Experiments by Mathematica.................... 100
3.8.3 Functions Needed in The Experiments by Matlab ............ 106
3.8.4 Experiments by Matlab ..... 106
Exercises 3................. 111
4 Numerical Integration and Differentiation ........114
4.1 Introduction ........ 115
4.2 Interpolatory Quadratures........... 116
4.2.1 Interpolatory Quadratures.. 116
4.2.2 Degree of Accuracy........... 117
4.3 Newton-Cotes Quadrature Formula.................... 118
4.4 Composite Quadrature Formula . 123
4.4.1 Composite Trapezoidal Rule ..................... 123
4.4.2 Composite Simpson’s Rule ....................... 124
4.5 Romberg Integration................... 125
4.5.1 Recursive Trapezoidal Rule ...................... 125
4.5.2 Romberg Algorithm .......... 126
4.5.3 Richardson’s Extrapolation ....................... 128
4.6 Gaussian Quadrature Formula .... 129
4.7 Multiple Integrals ....................... 134
4.8 Numerical Differentiation........... 135
4.8.1 Numerical Differentiation . 135
4.8.2 Differentiation Polynomial Interpolation .. 137
4.8.3 Richardson’s Extrapolation ....................... 141
4.9 Computer Experiments............... 144
4.9.1 Functions Needed in the Experiments by Mathematica .... 144
4.9.2 Experiments by Mathematica.................... 144
4.9.3 Experiments by Matlab ..... 149
Exercises 4................... 153
5 Solution of Nonlinear Equations ......................156
5.1 Introduction ........ 156
5.2 Basic Theories .... 158
5.3 Bisection Method 159
5.4 Iterative Method and Its Convergence................ 162
5.4.1 Fixed Point and Iteration ... 162
5.4.2 Global Convergence.......... 163
5.4.3 Local Convergence............ 165
5.4.4 Order of Convergence ....... 167
5.5 Accelerating Convergence.......... 168
5.6 Newton’s Method ....................... 170
5.6.1 Newton’s Method and Its Convergence .... 170
5.6.2 Reduced Newton Method and Newton’s Descent Method ....................... 172
5.6.3 The Case of Multiple Roots....................... 173
5.7 Secant Method and Muller Method .................... 174
5.7.1 Secant Method................... 174
5.7.2 Muller Method................... 175
5.8 Systems of Nonlinear Equations. 176
5.9 Computer Experiments............... 179
5.9.1 Functions Needed in the Experiments by Mathematica .... 179
5.9.2 Experiments by Mathematica.................... 180
5.9.3 Experiments by Matlab ..... 185
Exercises 5................. 188
6 Direct Methods for Solving Linear Systems ....191
6.1 Introduction ........ 192
6.2 Gaussian Elimination.................. 193
6.2.1 Basic Gaussian Elimination....................... 193
6.2.2 Triangular Decomposition. 197
6.3 Gaussian Elimination with Column Pivoting ..... 200
6.4 Methods of the Triangular Decomposition......... 202
6.4.1 The Direct Methods of The Triangular Decomposition .... 202
6.4.2 The Square Root Method .. 203
6.4.3 The Speedup Method......... 206
6.5 Analysis of Round-off Errors ..... 210
6.5.1 Condition Number............. 210
6.5.2 Iterative Refinement .......... 214
6.6 Computer Experiments............... 215
6.6.1 Functions Needed in the Experiments by Mathematica .... 215
6.6.2 Experiments by Mathematica.................... 215
6.6.3 Functions Needed in the Experiments by Matlab.............. 222
6.6.4 Experiments by Matlab ..... 222
Exercises 6................... 227
7 Iterative Techniques for Solving Linear Systems ....................230
7.1 Introduction ........ 231
7.2 Basic Iterative Methods .............. 233
7.2.1 Jacobi Method ................... 234
7.2.2 Gauss-Seidel Method ........ 236
7.2.3 SOR Method...................... 237
7.3 Iterative Method Convergence ... 238
7.3.1 Basic Theorems ................. 238
7.3.2 Some Special Systems of Equations.......... 243
7.4 Computer Experiments............... 247
7.4.1 Functions Needed in The Experiments by Mathematica... 247
7.4.2 Experiments by Mathematica.................... 247
7.4.3 Experiments by Matlab ..... 251
Exercises 7................... 255
8 Numerical Solution of Ordinary Differential Equations ............258
8.1 Introduction ........ 258
8.2 The Existence and Uniqueness of Solutions....... 260
8.3 Taylor-Series Method................. 262
8.4 Euler’s Method ... 263
8.5 Single-step Methods ................... 267
8.5.1 Single-step Methods.......... 267
8.5.2 Local Truncation Error ...... 267
8.6 Runge-Kutta Methods ................ 268
8.6.1 Second-Order Runge-Kutta Method.......... 268
8.6.2 Fourth-Order Runge-Kutta Method........... 270
8.7 Multistep Methods...................... 271
8.7.1 General Formulas of Multistep Methods... 272
8.7.2 Adams Explicit and Implicit Formulas...... 273
8.8 Systems and Higher-Order Differential Equations..................... 275
8.8.1 Vector Notation ................. 276
8.8.2 Taylor-Series Method for Systems............ 278
8.8.3 Fourth-Order Runge-Kutta Formula for Systems.............. 279
8.9 Computer Experiments............... 281
數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024

數值分析Numerical Analysis(第2版) 下載 epub mobi pdf txt 電子書

數值分析Numerical Analysis(第2版) pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024

數值分析Numerical Analysis(第2版) mobi pdf epub txt 電子書 下載 2024

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024

类似图書 點擊查看全場最低價

數值分析Numerical Analysis(第2版) epub pdf mobi txt 電子書 下載 2024


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有