数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025
☆☆☆☆☆
简体网页||
繁体网页
[德] E.赫克 著
下载链接在页面底部
下载链接1
下载链接2
下载链接3
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
发表于2025-04-29
商品介绍
出版社: 科学出版社
ISBN:9787030132826
版次:1
商品编码:12110918
包装:平装
丛书名: 数学名著译丛
开本:32开
出版时间:2005-01-01
用纸:胶版纸
页数:261
字数:220000
正文语种:中文
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025
类似图书 点击查看全场最低价
相关书籍
书籍描述
内容简介
《代数数理论讲义》向读者介绍了构成代数数论理论框架的一般问题的一个理解.从数学特别是算数的发展中引出结论,并用群论的术语与方法来给出关于有限与无限阿贝尔群的必要定理,导致了形式上与概念上相当的简化;给出了任意代数数域中*一般二次互反律一个新的证明,并给出了相对二次类域存在性的证明。
《代数数理论讲义》可供高等学校数学系数论与代数专业的研究生及高年级学生阅读,也可作为数论研究人员的科研参考书。
内页插图
目录
前言/序言
这本书是根据我在巴塞尔、哥庭根与汉堡的若干次讲课材料写成的,其目的在于向没有任何数论预备知识的读者介绍构成代数数论理论框架的一般问题一个理解。前七章没有包含本质上新的东西;包括其形式在内,我从数学,特别是算术的发展中引出结论,并用群论的术语与方法来给出关于有限与无限阿贝尔群的必要定理。这将导致形式上与概念上相当的简化。对于熟悉这个理论的人,有些章节或许仍然会感兴趣,例如阿贝尔群基本定理的证明(§8),我用戴德金的原始构造方法处理相对判别式理论(§36,38),及不用截塔函数决定类数(§50)。
最后一章,即第八章将引导读者至近代理论之高峰。这一章将给出任意代数数域中最一般二次互反律一个新的证明,其中用到西塔函数。它比至今所知道的证明本质上要简短得多,尽管这一方法至今还不能作推广,但它可以给初学者在代数数域中出现的各种新概念一个全貌,从而可使较高的互反定理变得较易接受,作为互反定理的推论,在本书的结尾,我们将给出相对二次类域存在性的证明。
作为预备知识,我们仅要求读者具备初等微积分与代数知识,对于最后一章,则要求有复函数论知识。
我谨向班克、汉布尔革与奥斯特罗夫斯基先生表示感谢,他们为本书指误并作了不少建议,早在大战之前,出版社即坚持从事了本书的出版工作,谨致谢意.为使本书可能面世,他们不顾环境的极端困难,对于他们的辛劳,应致特殊感谢。
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025
数学名著译丛:代数数理论讲义 下载 epub mobi pdf txt 电子书 2025
数学名著译丛:代数数理论讲义 pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2025
数学名著译丛:代数数理论讲义 mobi pdf epub txt 电子书 下载 2025
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载
读者评价
评分
☆☆☆☆☆
.........................
评分
☆☆☆☆☆
比较经典的类域论教材,讲述数论中的一般互反律的,还不错,值得一看。
评分
☆☆☆☆☆
很好地书,有兴趣的朋友可以买来读读!
评分
☆☆☆☆☆
好书,真的经典,好好学学……
评分
☆☆☆☆☆
.........................
评分
☆☆☆☆☆
很好的一本经典数论书籍,几乎不需要什么数学基础就可看懂,为我这种门外爱好者提供了便利。
评分
☆☆☆☆☆
《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。
评分
☆☆☆☆☆
数论甚至整个数学,起步于素数,精研素数,无限风光在险峰。
评分
☆☆☆☆☆
.........................
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025
类似图书 点击查看全场最低价
数学名著译丛:代数数理论讲义 epub pdf mobi txt 电子书 下载 2025