内容简介
This is the third of a new five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing and the important applications for chemical sensing such as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions.
作者简介
Ghenadii Korotcenkov, received his Ph.D. in Physics and Technology of Semiconductor Materials and Devices in 1976, and his Habilitate Degree (Dr.Sci.) in Physics and Mathematics of Semiconductors and Dielectrics in 1990. For a long time he was a leader of the scientific Gas Sensor Group and manager of various national and international scientific and engineering projects carried out in the Laboratory of Micro- and Optoelectronics, Technical University of Moldova. Currently, Dr. Korotcenkov is a research professor at the Gwangju Institute of Science and Technology, Republic of Korea.
Specialists from the former Soviet Union know Dr. Korotcenkov's research results in the field of study of Schottky barriers, MOS structures, native oxides, and photoreceivers based on Group IIIH-V compounds very well. His current research interests include materials science and surface science, focused on nanostructured metal oxides and solid-state gas sensor design. Dr. Korotcenkov is the author or editor of 11 books and special issues, 11 invited review papers, 17 book chapters, and more than 190 peer-reviewed articles. He holds 18 patents, and he has presented more than 200 reports at national and international conferences.
Dr. Korotcenkov's research activities have been honored by an Award of the Supreme Council of Science and Advanced Technology of the Republic of Moldova (2004), The Prize of the Presidents of the Ukrainian, Belarus, and Moldovan Academies of Sciences (2003), Senior Research Excellence Awards from the Technical University of Moldova (2001, 2003, 2005), a fellowship from the International Research Exchange Board (1998), and the National Youth Prize of the Republic of Moldova (1980), among others.
内页插图
目录
PREFACE
ABOUT THE EDITOR
CONTRIBUTORS
6 MODELING AND SIGNAL PROCESSING STRATEGIES FOR MICROACOUSTIC
CHEMICAL SENSORS
1 Sensing Principles of Microacoustic Chemical Sensors
1.1 Introduction
1.2 Microacoustic Chemical Sensors
2 Simulation and Modeling of Acoustic Wave Propagation, Excitation, and Detection
2.1 Analytical Solution to the Undisturbed Wave Propagation Problem
2.2 Analytical Solution to the Wave Excitation and Detection Problem
2.3 Finite-Element Method
2.4 Equivalent-Circuit Models
3 Sensor Steady-State Response
3.1 Perturbation Approaches
3.2 Temperature Effects
4 Sensor Dynamics
4.1 Linear Model
4.2 State-Space Description
5 Sensor Signal Processing
5.1 Suppression of Temperature Effects
5.2 Signal Processing Based on Linear Analytical Model
5.3 Wiener Deconvolution
5.4 Kalman Filter
5.5 Discussion of State-Space-Based Signal Processing
6 Summary
7 Nomenclature
References
7 HIERARCHICAL SIMULATION OF CARBON NANOTUBE ARRAY-BASED CHEMICAL SENSORS WITH ACOUSTIC PICKUP
1 Introduction
2 Simulation Levels of Nanodesign
3 Prototype of Hierarchical Simulation System for Nanodesign
4 Continual Simulation of SAW Propagation in a Layered Medium
5 Structure of Carbon Nanotubes and Adsoption Properties of CNT Arrays
5.1 Atomic Structure of Single- and Multiwalled Nanotubes
5.2 Quantum Mechanical Study of the Adsorption of Simple Gases on Carbon Nanotubes
5.3 Molecular Mechanics of Physical Adsorption of the Individual Molecules on the CNT
6 Simulation of a Carbon Nanotube Array-Based Chemical Sensor with an Acoustic Pickup
6.1 Molecular Dynamics Calculation of the Elastic Moduli of Individual Carbon Nanotubes
6.2 Molecular Dynamics Study of Distribution of Adsorbed Molecules in CNT Array Pores and Calculation of Acoustic Parameters of CNT Arrays
6.3 SAW Phase Velocity Change Due to Molecular Adsorption on CNT Arravs in SAW-Based Chemical Sensors
7 Conclusion
References
8 MICROCANTILEVER-BASED CHEMICAL SENSORS
9 MODELING OF MICROMACHINED THERMOELECTRIC GAS SENSORS
10 MODELING SIMULATION, AND INFORMATION PROCESSING FOR DEVELOPMENT OF A POLYMERIC ELECTRONIC NOSE SYSTEM
前言/序言
好的,这是一份针对您提供的书名《传感材料与传感技术丛书·化学传感器:仿真与建模(第3卷·固态设备 下册 影印版)》的图书简介,内容将围绕该丛书及化学传感器研究的更广泛领域展开,同时避免直接提及或描述该具体卷册的内容。 --- 传感材料与传感技术丛书:洞察前沿,构建未来智能感知体系 在当今科技飞速发展的时代,信息获取的精度与速度已成为衡量一个系统智能程度的关键指标。从环境监测、工业过程控制到生物医学诊断,无不依赖于对特定化学或物理信号的实时、准确捕获。《传感材料与传感技术丛书》旨在为该领域的研究人员、工程师和高层次学生提供一个系统、深入且与时俱进的知识平台,全面覆盖从基础理论到尖端应用的广阔图景。 本丛书定位于化学传感领域的前沿动态与核心技术攻关,汇集了全球顶尖学者的最新研究成果与深刻见解。它不仅是一套技术手册,更是一部引领未来传感技术发展方向的战略指南。丛书的编写紧密围绕“材料发现”、“器件设计”、“信号机制”以及“系统集成”这四大核心支柱展开,力求构建一个从微观机理到宏观应用的完整知识链条。 第一支柱:新颖传感材料的发现与理性设计 传感器的性能,其根基在于所选用的功能材料。本丛书对先进功能材料的关注是其鲜明的特色之一。 我们深入探讨了纳米结构材料在提高灵敏度和选择性方面所扮演的关键角色。例如,二维材料(如石墨烯、过渡金属硫化物)因其极高的比表面积和独特的电子结构,在气体吸附和电荷转移过程中展现出的巨大潜力被详尽剖析。丛书讨论了如何通过表面修饰、掺杂工程和异质结构建等策略,精确调控材料的能带结构和反应活性位点,以期实现对特定目标物的超低浓度检测。 此外,丛书还广泛覆盖了有机-无机杂化材料、金属有机骨架(MOFs)以及共价有机框架(COFs)在化学传感中的应用。对于这些多孔、高结晶度的材料,重点阐述了其孔径分布、表面官能团与分析物分子间的分子识别机制,以及如何利用其独特的物理化学性质(如荧光猝灭、电导变化)进行高效传感。这部分内容强调了材料设计与性能之间的理性关联,指导研究者如何“按需设计”材料。 第二支柱:多模态传感机理与器件集成 化学传感器的物理实现形式多种多样,本丛书对不同类型的传感平台进行了细致的梳理和比较分析。 我们探讨了电化学传感技术的最新进展,包括伏安法、阻抗谱学在分析过程中的应用,并重点关注了新型电极材料(如碳纳米管、量子点修饰电极)如何显著提升检测的灵敏度和抗干扰能力。在光学传感领域,丛书详细论述了基于表面等离子体共振(SPR)、光纤光栅传感和荧光探针的原理与实现,特别是光子晶体和超表面结构在增强信号采集效率方面的创新应用。 对于质量敏感型传感器(如石英晶体微天平 QCM),丛书解析了界面分子吸附动力学对频率变化的影响机制。更重要的是,丛书强调了多模态集成的趋势——即将两种或多种传感机制(如电学与光学)耦合于同一平台,通过数据融合来克服单一传感器的局限性,实现更鲁棒、更可靠的识别结果。 第三支柱:信号获取、处理与环境适应性 一个成熟的传感系统,离不开高效的信号采集和可靠的数据解析能力。丛书在信号工程层面进行了深入探讨。 在数据采集方面,丛书阐述了如何设计低噪声、高精度的前端电路来应对微弱信号的挑战。在数据解析方面,本部分内容涵盖了从基础的信号去噪、基线漂移校正,到复杂的模式识别和机器学习在多组分混合物分离和背景干扰消除中的应用。通过建立数学模型来描述传感器对环境温度、湿度变化的敏感性,是确保传感器在真实、复杂环境下稳定工作的关键。丛书提供了从统计学角度分析传感器响应的系统方法论。 第四支柱:面向未来应用的跨学科整合 本丛书不仅关注基础研究,更将目光投向传感技术在实际场景中的落地应用。我们探讨了化学传感器如何驱动环境监测网络化,如何助力即时医疗诊断(Point-of-Care Testing, POCT)的发展,以及如何应用于食品安全快速筛查。 特别是对于生物传感领域,丛书详细分析了酶促反应、抗原抗体结合等生物学识别过程与电子信号输出之间的耦合界面工程。如何实现传感器的小型化、低功耗化和无线化,以满足物联网(IoT)对分布式传感器的需求,是丛书关注的重点之一。 总而言之,《传感材料与传感技术丛书》系列为专业读者提供了一张详尽的路线图,展示了从基础科学探索到工程化实现的完整路径。它致力于推动读者对化学传感领域的深刻理解,助力创新解决方案的诞生,最终服务于更安全、更健康、更智能化的未来社会。