内容简介
As with the first, the second volume contains substantially more material than can be covered in a one-semester course. Such courses may omit many beautiful and well-grounded applications which connect broadly to many areas of mathematics.We of course hope that students will pursue this material independently; teachers may find it useful for undergraduate seminars.
目录
Foreword
Chapter Ⅵ Integral calculus in one variable
1 Jump continuous functions
Staircase and jump continuous functions
A characterization of jump continuous functions
The Banach space of jump continuous functions
2 Continuous extensions
The extension of uniformly continuous functions
Bounded linear operators
The continuous extension of bounded linear operators
3 The Cauchy-Riemann Integral
The integral of staircase functions
The integral of jump continuous functions
Riemann sums
4 Properties of integrals
Integration of sequences of functions
The oriented integral
Positivity and monotony of integrals
Componentwise integration
The first fundamental theorem of calculus
The indefinite integral
The mean value theorem for integrals
5 The technique of integration
Variable substitution
Integration by parts
The integrals of rational functions
6 Sums and integrals
The Bernoulli numbers
Recursion formulas
The Bernoulli polynomials
The Euler-Maclaurin sum formula
Power sums
Asymptotic equivalence
The Biemann ζ function
The trapezoid rule
7 Fourier series
The L2 scalar product
Approximating in the quadratic mean
Orthonormal systems
Integrating periodic functions
Fourier coefficients
Classical Fourier series
Bessel's inequality
Complete orthonormal systems
Piecewise continuously differentiable functions
Uniform convergence
8 Improper integrals
Admissible functions
Improper integrals
The integral comparison test for series
Absolutely convergent integrals
The majorant criterion
9 The gamma function
Euler's integral representation
The gamma function on C(-N)
Gauss's representation formula
The reflection formula
The logarithmic convexity of the gamma function
Stirling's formula
The Euler beta integral
Chapter Ⅶ Multivariable differential calculus
1 Continuous linear maps
The completeness of/L(E, F)
Finite-dimensional Banach spaces
Matrix representations
The exponential map
Linear differential equations
Gronwall's lemma
The variation of constants formula
Determinants and eigenvalues
Fundamental matrices
Second order linear differential equations
Differentiability
The definition
The derivative
Directional derivatives
Partial derivatives
The Jacobi matrix
A differentiability criterion
The Riesz representation theorem
The gradient
Complex differentiability
Multivariable differentiation rules
Linearity
The chain rule
The product rule
The mean value theorem
The differentiability of limits of sequences of functions
Necessary condition for local extrema
Multilinear maps
Continuous multilinear maps
The canonical isomorphism
Symmetric multilinear maps
The derivative of multilinear maps
Higher derivatives
Definitions
Higher order partial derivatives
The chain rule
Taylor's formula
Functions of m variables
Sufficient criterion for local extrema
6 Nemytskii operators and the calculus of variations
Nemytskii operators
The continuity of Nemytskii operators
The differentiability of Nemytskii operators
The differentiability of parameter-dependent integrals
Variational problems
The Euler-Lagrange equation
Classical mechanics
7 Inverse maps
The derivative of the inverse of linear maps
The inverse function theorem
Diffeomorphisms
The solvability of nonlinear systems of equations
8 Implicit functions
Differentiable maps on product spaces
The implicit function theorem
Regular values
Ordinary differential equations
Separation of variables
Lipschitz continuity and uniqueness
The Picard-Lindelof theorem
9 Manifolds
Submanifolds of Rn
Graphs
The regular value theorem
The immersion theorem
Embeddings
Local charts and parametrizations
Change of charts
10 Tangents and normals
The tangential in Rn
The tangential space
Characterization of the tangential space
Differentiable maps
The differential and the gradient
Normals
Constrained extrema
Applications of Lagrange multipliers
Chapter Ⅷ Line integrals
1 Curves and their lengths
The total variation
Rectifiable paths
Differentiable curves
Rectifiable curves
2 Curves in Rn
Unit tangent vectors
Paramctrization by arc length
Oriented bases
The Frenet n-frame
Curvature of plane curves
Identifying lines and circles
Instantaneous circles along curves
The vector product
The curvature and torsion of space curves
3 Pfaff forms
Vector fields and Pfaff forms
The canonical basis
Exact forms and gradient fields
The Poincare lemma
Dual operators
Transformation rules
Modules
4 Line integrals
The definition
Elementary properties
The fundamental theorem of line integrals
Simply connected sets
The homotopy invariance of line integrals
5 Holomorphic functions
Complex line integrals
Holomorphism
The Cauchy integral theorem
The orientation of circles
The Cauchy integral formula
Analytic functions
Liouville's theorem
The Fresnel integral
The maximum principle
Harmonic functions
Goursat's theorem
The Weierstrass convergence theorem
6 Meromorphie functions
The Laurent expansion
Removable singularities
Isolated singularities
Simple poles
The winding number
The continuity of the winding number
The generalized Cauchy integral theorem
The residue theorem
Fourier integrals
References
Index
前言/序言
分析(第2卷) epub pdf mobi txt 电子书 下载 2025
分析(第2卷) 下载 epub mobi pdf txt 电子书 2025
评分
☆☆☆☆☆
这套书给人的感觉有点不上不下。具体来说,作者(基本上是)打算避开集合论公理和数理逻辑,但又花了十几页的功夫去描述这两个东西,而且还是在避免使用符号语言的情况下,使用自然语言来说明的.......嘛,因为原文是德文,说明上应该会比这英译本的要严格一些,但是这英译本就......举个例子来讲,英译本中一会儿用英语“and”来表示逻辑符号里的"AND",一会儿又用“and”来表示逻辑符号里的"INCLUSIVE OR"。都无语了......
评分
☆☆☆☆☆
书中有些证明需要构造算子或代数结构,但由于书中没有给出wff的相关逻辑规则,实际上,这些算子和代数结构不应该要求读者去构造。因为这本书并没有告诉读者如何去检验自己的构造是否合理。
评分
☆☆☆☆☆
这套书给人的感觉有点不上不下。具体来说,作者(基本上是)打算避开集合论公理和数理逻辑,但又花了十几页的功夫去描述这两个东西,而且还是在避免使用符号语言的情况下,使用自然语言来说明的.......嘛,因为原文是德文,说明上应该会比这英译本的要严格一些,但是这英译本就......举个例子来讲,英译本中一会儿用英语“and”来表示逻辑符号里的"AND",一会儿又用“and”来表示逻辑符号里的"INCLUSIVE OR"。都无语了......
评分
☆☆☆☆☆
拓扑结构的基本概念如连通性、密实度和介绍了homeomorphisms早期使用作为一个基础,证明将远不及优雅的(和不直接)否则。例如,介值定理,证明了结果的连接的一个空间。一旦这是结果确定下来的普遍性,它讨论了R。
评分
☆☆☆☆☆
这套书给人的感觉有点不上不下。具体来说,作者(基本上是)打算避开集合论公理和数理逻辑,但又花了十几页的功夫去描述这两个东西,而且还是在避免使用符号语言的情况下,使用自然语言来说明的.......嘛,因为原文是德文,说明上应该会比这英译本的要严格一些,但是这英译本就......举个例子来讲,英译本中一会儿用英语“and”来表示逻辑符号里的"AND",一会儿又用“and”来表示逻辑符号里的"INCLUSIVE OR"。都无语了......
评分
☆☆☆☆☆
导数不出现,直到301页,但当它介绍,它定义在条款的这东西到底是什么:一个线性近似。在大多数文本,这个观点并不是讨论直到“多元”分析覆盖。
评分
☆☆☆☆☆
导数不出现,直到301页,但当它介绍,它定义在条款的这东西到底是什么:一个线性近似。在大多数文本,这个观点并不是讨论直到“多元”分析覆盖。
评分
☆☆☆☆☆
作者的典型风格,因为他们承认在他们的前言,是定义数学对象和概念在最一般的方式。他们,然后通过这些定义的后果。考虑一个特定的例子,这种方法,社区的定义提出了三世的连续性。1,一个函数(定义度量空间之间)是连续在x如果每个社区V f(x)存在一个这样的社区你x f(U)包含在诉随后,证明这是相当于两个传统的ε三角洲定义和连续性的情况定义在条款的收敛序列。作者也表明连续性所以定义也同样适用于一个赋范矢量空间(因为每个赋范矢量空间也是一个度量空间)。
评分
☆☆☆☆☆
总的来说,它们的证明简洁和逻辑但需要一些耐心跟随。当做出一个论点,作者经常引用前题一个b。c和定理x y。没有显式地声明校长z,他们正在使用,即使它可能有一个名字。因此,作为一个读者,你要么必须愿意遵循面包屑他们提供或确保你明白为什么他们的论证工作。这真的不是一个批评,只是一个观察。因为这个原因虽然,如果你打算买卷的工作,您N必须买卷N - 1。在每一卷,作者承认的序言中,他们的是太多的材料覆盖在一个学期;事实上,至少有足够的材料在每个卷为一个学年工作的价值。