走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf  mobi txt 电子书 下载

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
[日] 安野光雅 著,李玉珍 译

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-05

商品介绍



出版社: 新星出版社
ISBN:9787513308076
版次:1
商品编码:11135715
品牌:爱心树
包装:平装
开本:16开
出版时间:2013-01-01
用纸:胶版纸
页数:324
套装数量:3
正文语种:中文

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

产品特色

内容简介

  《走进奇妙的数学世界1》:
  一章:不是一伙的(背后的数学思想:集合)
  在同一页中,找出谁和大家“不是一伙的”,也就是找出不属于同一类的那个。例如,许多个方块和一个圆,圆和大家“不是一伙的”;不能自己运动的,和能用脚或翅膀活动的“不是一伙的”;自行车和其他有发动机的交通工具“不是一伙的”。形状、颜色、生长环境、数目……都可以是分类的条件。通过巧妙的游戏,作者让孩子们理解分类。分类的条件可以有很多种,相应地得出的结果就会不同,这也能让孩子了解到事物是可以从多种角度来看待的。
  第二章:魔力药水(背后的数学思想:组合与分离)
  从天使、独角兽等幻想中的事物,到带橡皮的铅笔、带轮子的车等现实中的事物,让孩子了解“组合”在生活中的广泛运用。然后再从实际可见的物体之间的结合,延伸到物体与颜色的结合,以及形容词与名词之间的结合,从具象到抽象,逐步深入,让孩子充分理解“组合”的意义。从逆向思维的角度,讲述“分离”的重要意义。
  第三章:顺序(背后的数学思想:序数和基数,一一对应)
  小朋友们做好了一些扑克牌,可是有一些看起来出错了,比如有六个红桃的扑克牌上写着“7”,有四个梅花的扑克牌上写着“5”……想想看应该怎么改呢?接着,来看看上下两行扑克牌,找找“上排左数第四张是什么牌”,“下排右数第四张是什么牌”……然后,通过住宅楼的楼层、排列,戏票的座位号,住家的门牌号等方式,让小朋友们理解位置、序数、基数等基本知识。安野光雅认为,比起为了数数而数数,思考方式和解题能力的培养才是数学的根本。
  第四章:比高矮(背后的数学思想:测量,数值单位)
  两个人比高矮,站在一起,马上能知道谁的个子高,可如果想和远方的人比较,就得想想别的办法了,比如,分别做出和身高一样长的棍子,再通过棍子比高矮。不仅是身高,投球数、体重、水量……都可以做成“棍子”来“比高矮”。“棍子”相当于数值,即用数值来做间接的比较。本章中,作者让小读者们在游戏中认识测定重量、长度、时间、体积等的工具,理解数值的意义。

  《走进奇妙的数学世界2》:
  一章:不可思议的魔法机器(背后的数学思想:何为“关系”,函数的映射关系)
  两个小矮人发明了一台魔法机器,从左边的入口放进东西去,就会从右边的出口出来一个不一样的东西,在这个过程中,物体发生了转换和变化,入和出之间存在着一定的“关系”。作者通过小游戏将“关系”这种不可视、抽象的概念生动地介绍给孩子们,让他认识“关系”,思考各种人、事、物之间,究竟会发生什么样相互的关系。这种逻辑式的思考,是基本且必要的。
  第二章:比一比、想一想(背后的数学思想:数学式的观察与比较)
  两个洋娃娃、两只狗、两幅图、两个迷宫……左右两页的图看起来一样,但仔细看又不太一样,到底哪里一样,哪里又不一样,通过仔细地观察和比较,孩子们就能得出答案了。比较着思考是一种基本的思考方法,针对问题善用观察、分析、比较的能力,有助于做出全面正确的抉择。
  第三章:点、点、点……(背后的数学思想:点、线、面的关系)
  拿放大镜看一副画,可以看到是由许多个点构成;电视的每一个图像,是由红绿蓝三原色的小点构成;缝纫机车出的线,也是由一个个的点组成的。此处的“点”并非数学概念中的点,而是具有更广泛的含义,比如构成人体的细胞,宇宙的形成等等。从“点”这个小单位来探讨事物的构成,也即以微观的方式去看身边的事物,是不是会有很多新鲜的发现呢?
  第四章:数字圈圈(背后的数学思想:数字是如何形成的,进位的概念)
  画小朋友,可以一步步简化成圈圈,按照这样的方法,马、树、小鸟,很多东西都可以画成圈圈来代替,圈圈与数目相对应。每一个数目都有它的名字,如果都以圈圈来表示,数目多的时候容易混淆,所以就可以用数字来代表。而当数量比10个方格多时,把10个方格捆成一个长条(即以10为一个单位),作者由此巧妙地带出了进位的概念。
  第五章:数一数水(背后的数学思想:连续量的测量,量杯)
  很多东西都可以画成圈圈来数,可是多到像豆子那么多,该怎么数呢?水、砂糖此类东西要怎么数呢?如果了解了数量的两个类别——离散量和连续量,问题就会简单多了。离散量是可以个别分开,能一个一个数算的;连续量无法一个个数算,因此需要特定的单位来测量。如果想比较两个容器哪个能装的水更多,就用到量杯这种工具了。可以让孩子试着去量一量水、身高、体重……透过这样的具体经验,增进对“量”的认知能力。

  《走进奇妙的数学世界3》:
  一章:魔药(背后的数学思想:变化与位相,拓扑学)
  两个小矮人调制了两种魔药,一种可以让物体横向伸缩,一种可以让物体纵向伸缩,涂抹不同的魔药,物体就有被压缩或拉伸的感觉。站在高楼上俯身往下看,拿着书横着看过去,物体的长度并未改变,视觉感受却不一样。不过,不管图形怎么变化,两只眼睛不会变成三只,嘴巴也不会跑到鼻眼睛上面去——这便是变化中的“不变”。本章通过有趣的游戏,让孩子们从生活中发现拓扑学。
  第二章:漂亮的三角形(背后的数学思想:三角形基本概念与应用,初等几何学)
  与花草树木所属的“自然”不同,三角形是另一种“自然”,虽默默无闻,但它的美丽更让人觉得不可思议。三角形在生活中随处可见,所有平面上的三角形具有共同的几何学上的性质,本章即引导孩子去接近和认识三角形,欣赏三角形的变化和趣味。通过折纸和剪纸游戏,安野光雅带领孩子们了解三角形,再从平面到立体,创造出各种有趣的造型,体验玩三角形的乐趣。
  第三章:迷宫(背后的数学思想:拓扑学应用,一笔画)
  迷宫是一种必须运用逻辑思考,需全面观察判断的益智游戏。在本章中,作者以树枝旁生、分叉的方式来说明,读者可以利用这种方式,自己设计迷宫和孩子一起玩。从迷宫延伸开来,通过七孔桥问题,作者引入了对于“一笔画”的介绍,生活中有各种各样的一笔画,哪些画是可以一笔画成的?
  第四章:左和右(背后的数学思想:左和右的位置关系,方位,如何描述路线)
  用文字表述左和右并不容易,在本章中,作者用活泼的图画和生动的描述,让孩子从认识自己身体的左右开始,循序渐进认识生活中常见的事物和居住环境的左和右。从同侧看,从对面看,从镜子里看……作者也不忘记通过各种变换形式让孩子们理解左和右的相对性。
  理解了左和右,作者进而引入方位的概念,如何依照地图找到想要去的地方。孩子们可以用语言描述如何去往目的地,逐渐增进方位感和空间位置的概念。

作者简介

  安野光雅(Anno Mitsumasa),享誉世界的绘本大师,国际童书界极高荣誉“安徒生奖”得主。1926年出生于日本岛根县津和野町,毕业于山口师范学校研究科,曾当过美术老师,后开始从事绘本创作、童书设计工作。1968年《奇妙国》出版,至今已出版七十多部绘本,获得过包括日本艺术选奖文部大臣新人奖、讲谈社出版文化奖绘本奖、英国凯特·格林威推荐奖、布拉迪斯拉发插画展(BIB)金苹果奖、意大利博洛尼亚国际儿童书展插画奖、日本菊池宽奖在内的多项大奖,被誉为“具有惊人才华的知性艺术家”。
  安野光雅擅长精细入微的水彩画法,他的画风精致细腻,多使用淡雅色调,营造出端庄稳重、温馨平和的氛围,温润气息弥漫画间。他笔下的大自然是动人,淡雅的色调和细腻的笔触,都带着浓厚的传统日本画的韵味。但在继承传统的同时,他又将西洋绘画中的写生和素描融入创作中,细致刻画的丰富细节尤其为人称道。
  安野光雅不仅擅长画画,他的知识也非常渊博,在人文、数学、建筑、文学等领域也有颇深的造诣。因此,他总是能将地方风俗、人文艺术等颇具文化气息的元素揉进他的风景画作之中,使得他的作品除了单纯的艺术欣赏之外,又多了一层人文记录的深厚内涵。同时,安野光雅还擅长创作数学主题的绘本,他将艺术与科学融为充满幽默的视觉游戏,构筑出兼具知性与诗意、充满童趣的“安野风格”,展现出敏锐的想象力和缜密的逻辑推理能力,
  安野光雅是现代日本儿童美术界中,创作方法和风格多样化的一位画家。在他的画中,四处洋溢着全人类共通的兴趣、感觉和幽默,所以他的绘本能够超过国界和文化差异,广受世界各地读者的喜欢。1984年,安野光雅荣获国际安徒生奖画家奖,评委会给予他这样的评价:“安野光雅在促进东西方的艺术交流与互相了解方面,扮演了日益重要的角色。他的创作极富传奇性,却能吸引各国欣赏者普遍的共鸣和喜爱,是一个具有惊人才华的知性艺术家。他的绘本不但十分优美,且具有极高的科学概念。”作为当今受西方瞩目的日本绘本大师,安野广雅同时在小品文、风景画和文学书的装帧画领域都获得很高的评价。
  安野光雅的主要著作有“旅之绘本”系列、《走进奇妙的数学世界》(1-3)、《奇妙国》《森林绘本》《颠倒》《ABC的书》《五十音绘本》《剪纸桃太郎》《数数看》《歌之绘本》《安野光雅的画集》《跳蚤市场》《喜欢大的国王》《天动说》《绘本平家物语》《帽子戏法》《壶中的故事》《三只小猪》《十个人快乐大搬家》《奇妙的种子》等。
  2001年3月20日安野光雅生日这天,安野光雅美术馆在他的故乡——津和野町开馆。

内页插图

精彩书评

  安野光雅用这套书证明了,思考并不一定是抽象和枯燥的,而数学也不仅只是数数和测量。
  ——《出版家周刊》

  安野光雅将复杂的事物转化为表格、图画、统计图等等,与常见的数学游戏和谜题不同,本书的重点并不在于数字和算术。作者用图画而非数字来讲数学,而比起标准答案,安野更关注敏锐的思考问题的方式
  ——《学校图书馆杂志》

  安野光雅先生用充满个性的笔锋,为我们讲述了各种各样的事,伴随着意外的惊喜、诸多趣味之处,让人越品越有滋味,不知不觉中就将我们带入一个个自由联想的世界里。我想这就是安野先生作品的大魅力。
  ——原日本评论社“数学栏目”主编、龟书房社长 亀井哲治郎

  这是一套不同寻常的数学绘本,讲的并非普通模式的数学,而是逻辑思维的思考方法,培养数学式的思维方式。
  ——日本“妈妈奖”获得者 佐佐木馨

  如今我已进入大学,学的专业就是数学,现在想来,小时候读过的这套绘本似乎是一座桥梁,它拥有一种通往各类题材的奇异般的力量。无论是孩子还是大人都可以在这套书中尽情品味数学之美。将来我有了孩子,也一定会让他读这套书。
  ——网站读者

  这套书是集“语言”和“科学”等要素为一身的、内容异常丰富的绘本。现在回想起来,孩子能逐渐喜欢上“科学、算数”类的书,很大程度上是受了这套绘本的影响。
  ——网站读者

  孩子读得很着迷,而且似乎随着时间的增加,他理解得也更加透彻,每次再读都会有新发现。他经常一口气连续读完全套三本,然后放一会儿,之后又像想起什么似的再重读一遍。
  ——网站读者

  很有意思的一套绘本!里面登场的人物、动植物也都是孩子喜欢的。就像一个吸引孩子的魔法世界,可以在里面快乐地学习!我刚刚向朋友推荐了这套书,没想到她对我说,“我也是全套都有啊”!
  ——网站读者

  安野光雅对于数学有着纯粹和浓厚的热爱,而这套书便是的例证。
  ——网站读者

目录

《走进奇妙的数学世界1》
不是一伙的
魔力药水
顺序
比高矮
后记(安野光雅)
《走进奇妙的数学世界2》
不可思议的魔法机器
比一比、想一想
点、点、点……
数字圈圈
数一数水
后记(安野光雅)
《走进奇妙的数学世界3》
魔药
漂亮的三角形
迷宫
左和右
后记(安野光雅)

精彩书摘

  不是一伙的
  本书最早出版时,有不少人都很吃惊:“这也是数学书吗?”这样的反应倒在我的意料之中,因为过去从没有过这种连猪和小鸟都有的数学书。如果只是要教数字和图形的话,好的数学书有很多。但我想,有没有那种书呢,不仅讲算术,还讲所有学问普遍适用的思考方法,并且能够从中分享发现和创造的喜悦,偶尔还会让人产生困惑,这样的书该多有意思啊。最后我发现,这样的书便是数学书。这也是本书之所以决定为数学书的原因。
  “数学”一词是由“Mathematics”翻译而来的,词源上并没有数学的意思,也不局限于数量和图形,而是更接近于求知和思考方法的意思。听到这些,我感到安心多了。一直以来困扰着我们,让我们觉得很难学的“算术”或“数学”,原来并非数学的本质。真正的数学处处蕴藏着发现的喜悦。数学是一栋自有史以来就不断被创造、被丰富着的宏伟的思想“建筑”。有的部分正经历着大改造,有的部分相对完善,也有的部分眼下正在建设中。
  为了给这栋建筑物再砌上一块砖,有的数学家倾注了一生的心血。但也正因为如此,这栋建筑物才能如此美丽。也因此,我们才想尽方法培养孩子认识这栋建筑物的能力。
  在数学中,进行数量加减运算的前提条件是单位相同。比如在第6页中,我们可以说图里有8只鸭子和1只狐狸,也可以说图里有9只小动物,单位不同,得出的结果就不同。本章的目的就是为了让大家思考“单位1”后面隐含的那个条件。最初人们有两种做法:
  I. 给出一个条件,并按此条件收集东西。
  II. 从收集到的东西中找出那个条件。
  本章采用的是方法II,比方法I稍微麻烦点。这就是初级集合论的思想。其中所举的例子有些或许会比较难,而且根据不同的分析方式,有时候还会得出两种结论,孩子们理解不了的时候,大人就陪他们一起来伤脑筋吧。如果你给了孩子很多提示,以帮助他们解答问题,那你只是教给了他一种知识;而当孩子和小伙伴们经过讨论,靠自己的能力得出答案时,即便有错,他们也能从中学会思考问题的方法和步骤,并获得发现的喜悦。
  魔力药水
  您见到过这样的画吗?画中的动物长着马脸、羊脚、狮子尾巴,额头上还有一个角。这就是古人根据希腊神话中的独角兽画成的美丽的画。
  法国超现实主义诗人洛特雷阿蒙曾写过一首诗,名叫《马尔多罗之歌》,其中有一句特别有名:
  “就像一架缝纫机和一把雨伞在解剖台上偶然相遇般美丽。”
  读这句诗的时候,你是否能体会到一种从未体验过的幻觉之美?!就像中世纪的炼金术一样,从很久很久以前起,把两种不同的东西结合起来思考是创造新事物的重要方法。所谓炼金术,就是试着使各种东西混合或者分离,偶尔也会有这样的情况:从炉中取出来的虽然不是金子,却是一种新物质。如果说希腊神话是信仰与幻想的炼金术,那么超现实派诗歌就是语言的炼金术,除了产生美以外,并没有其他什么东西。不过,中世纪真正的炼金术却真的提炼出了东西。
  你知道病原菌是怎样被发现的吗?自从发明显微镜后,人类就开始认识包括“细菌”在内的微生物世界了。由于在某类病人体内总能发现特定的细菌,因此,医学研究者将这两点结合在一起考虑,从而联想到这种特定的细菌就是病原菌,即致病的原因所在。现在看来这根本不算什么,但在当时,想要得出这样的推断,可绝不是炼金术之类的结合方法就能做到的。因为在那个年代,连医生都不相信这类肉眼看不见的东西能让一个好端端的人生病,更何况出现在显微镜下的并非只有一种特定的细菌。
  从把面包涂上黄油这类简单的组合,到必须天才才能完成的发现和发明,这当中都需要将一些东西进行或结合、或分离的工作。数学上将之称为“乘”,但在这里并不是指乘法的“乘”,而是有着更广泛的含义。“乘”不仅运用于数学领域,还是一个普通的日常用语。算术中的×表示一种数量关系,而这里的“乘”,则是一种最基本的思考方法。
  本章就是从“乘”这个动作所引出的有趣例题开始的。就好像棒球赛中的循环赛制一样,运用“乘法”,可以让任意两支球队都有交战的机会。这其实就是按一定的顺序逐一运用炼金术的方法进行组合。至于像38页那样的图形组合,就是更加需要灵感的一种“乘法”了。
  数一数水
  “把两块一样大的黏土合在一起,揉成一团,用算式表示的话不就是1+1=1 吗?”有人因被问到这样的问题而很伤脑筋。
  那么怎样才能给这个明显的错误做出明确的说明呢?
  所谓数量,可以分为两种情况:①像人和苹果那样,可以一个一个数出来,如果进行了分割,原来的形状就会改变。(数学上称这类量为离散量,也就是“数字圈圈”那一章中介绍的数量。)②像水、砂糖那样,不能一个一个地数,或者像时间、距离那样,会无穷尽地连续下去,因而不能用前一章中讲的圈圈的方法表示。(数学上称这类量为连续量,也就是“数一数水”这章中介绍的数量。)测量连续量之前,首先要定好单位。
  我们再来看前面那个问题,把本来具有连续量性质的黏土,用处理离散量的方法来做加法计算,难怪会让人觉得困惑。在这种情形下,只要明确了“把什么当做1”(单位)这个概念,就算把再多的黏土团儿揉捏在一起,也不会出什么问题。
  本章的主题,是把小玻璃杯作为“量杯”(单位)来测量水。所谓“测量”,就是以单位来数数量。因而不要只是读完这本书就算了,我希望大家也能实际地去量一量水,这样才能更加体会到其真正的意义。在此赘述一句,在测量水的体积时,世界通用的单位是L(升),大家都知道,1L等于1000cm3,是以长度为基本单位的。
  1792年夏天的某一天,法国测量队一行人扛着信号机、反射镜和其他一些工具,越过边境进入西班牙。相信那时一定会有很多人怀疑这一行人的动机,也许会盘问他们:“你们究竟是来做什么的?”“我们想测量子午线,也就是说,要测量地球的周长,并以此为基准来制定长度的单位。”然而当时有谁会当真呢?在那个时候,各国、各地区都有各自的测量单位,所以非常不方便。法国度量衡委员会希望能找到一个世界通用的长度单位,于是向全世界提议:把人类共同的财产—最大而又不变的地球加以测量,测出赤道到北极之间通过巴黎的子午线长度,再以该弧长的千万分之一为1米。
  想到我们现在使用的“米”这个单位,不是某个统治者的身高,也不是哪个神殿的长度,而是以独一无二、无法替代的地球为基准制定的,不禁让人肃然起敬!现今,根据国际度量衡大会对米所作的新定义,光在1/299792458(约三亿分之一)秒内在真空中传播的距离为1米。
  漂亮的三角形
  相信大人们都知道,任何一个三角形的内角之和都等于两个直角。记得中学学习初等几何时,我曾感叹过:“三角形内角之和怎么刚好等于两个直角呢!”一按下开关电视就会播放节目,拨个电话就能和远方的人通话,这些虽然让我们着实惊叹,但都是人为设计、制造出来的,跟蜜蜂采蜜、候鸟不会迷路等奇妙的自然现象相比,就没什么了不起了。
  想从大自然中找出像三角洲、矿石的结晶体那样纯粹的三角形,通常来说比较困难。但是如果把范围扩大到土木、建筑、交通、游戏等领域,从力学的视角来看,我们就会发现三角形无处不在。像这样抽象地来观察三角形,我们就会明白,无论是和建筑有关的三角形,还是和交通有关的三角形,只要是三角形,就必定具备共同的几何学性质。
  比起“为什么会开红色的花”这类大自然的神奇之处,默默无语的三角形那完整无缺的美丽,更让我觉得神奇!三角形虽然不同于鸟、虫一类的自然物,但我们可以把它看成另外一种自然。除了人类,没有其他生物会发觉它的神奇,任何智者也无法凭空创造出这样的奥妙。
  两千多年前,欧几里得(Euclid,约公元前325-公元前265年,古希腊数学家,被称为“几何之父”)创立了以三角形为代表的几何学,作为数学论证中的典型,这个美妙的体系一直保存至今。
  孩子们将来必然会与这门学科相遇,我希望孩子们是被它本身的协调之美所感动,自发地去靠近它、学习它、了解它,而不是为了考试,或是为了当测量师。
  本章如果用几何学来说明,有些内容难免会变得太深奥,可如果把它当成一种游戏,就可以轻松地接近它了。也就是说,不要把它当成正式的、需要一一加以证明的几何学,而是当成可以让孩子边玩边看的游戏。相信不同年龄的孩子自会有不同的玩法和乐趣。
  我曾经听过这么一个笑话:从前,德川家康(日本战国时代末期杰出的政治家、军事家)在课堂上听老师讲解“三角形的内角之和等于两个直角”的时候,问老师,“像琵琶湖(日本第一大淡水湖)那么大的三角形,内角之和也等于两个直角吗?”引来同学们的笑声一片。其实我们不应该只把它当做笑话来看,因为像地球那么大的球面上的三角形,其内角之和就不一定等于两个直角了。这时涉及的原理不属于欧几里得平面几何,所以又诞生了所谓的 “非欧几

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024

走进奇妙的数学世界(套装全3册) [7-10岁] 下载 epub mobi pdf txt 电子书 2024

走进奇妙的数学世界(套装全3册) [7-10岁] pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

走进奇妙的数学世界(套装全3册) [7-10岁] mobi pdf epub txt 电子书 下载 2024

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

我觉得应该4年纪以上再买,买早了孩子看不懂

评分

非常好非常好非常好非常好非常好非常好非常好非常好非常好非常好非常好非常好 有评价说明很好

评分

四岁半小朋友,最近一段时间喜欢玩电子游戏,所以,买了这本书想转移他的注意力,没想到小朋友很感兴趣,成功从喜欢玩游戏过渡到想自己学会设计游戏,最初陪着小朋友一起做,后面孩子已经能根据颜色短句自己选择判断,真的很棒!值得拥有!

评分

即便是对小盆友而言,数学也不只是计算。这套书用趣味的方式显示了一些数学知识,很有意思。

评分

网购,总有大量的包裏收,感觉写评语花掉了我大量的时间和精力!所以在一段时间里,我总是不去评价者随便写写!但是,我又总是觉得好像有点对不住那些辛苦工作的卖家客服、仓管、老板。于是我写下了一小段话,给我觉得能拿到我五星好评的卖家,以示感谢和尊敬!首先,宝贝是性价比很高的,我每次都会先试用再评价的,虽然宝贝不一定是最好的,但在同等的价位里面绝对是最棒的。希望店家能再接再厉,做得更大更强,提供更多更好的东西给大家。给您的商品和服务点赞!

评分

质量非常好,与卖家描述的完全一致,非常满意,真的很喜欢,完全超出期望值,发货速度非常快,包装非常仔细、严实,物流态度很好,运送速度很快,很满意的一次购物

评分

京东物流快,@@商品质量好价格实惠经常来

评分

每年6月是京东的店庆月,每年6月18日是京东店庆日。在店庆月京东都会推出一系列的大型促销活动,以“火红六月”为宣传点,其中6月18日是京东促销力度最大的一天。一度将京东618促成与‘双11’遥相呼应的又一大全民网购狂欢节[2]。

评分

凑字凑字凑字凑字凑字凑字

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

走进奇妙的数学世界(套装全3册) [7-10岁] epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有