內容簡介
This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
The discussion of saddle point problems is a lughlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena.
The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.
內頁插圖
目錄
Preface to the Third English Edition
Preface to the First English Edition
Preface to the German Edition
Notation
Chapter Ⅰ Introduction
1. Examples and Classification of PDE's
Examples
Classification of PDE's
Well-posed problems
Problems
2. The Maximum Ptinciple
Examples
Corollaries
Problem
3. Finite Difference Methods
Discretization
Discrete maximum principle
Problem
4. A Convergence Theory for Difference Methods
Consistency
Local and global error
Limits of the con-vergence theory
Ptoblems
Chapter Ⅱ Conforming Finite Elements
1. Sobolev Spaces
Introduction to Sobolev spaces
Friedrichs' inequality
Possible singularities of H1 functions
Compact imbeddings
Problems
2. Variational Formulation of Elliptic Boundary-Value Problems of Second Order
Variational formulation
Reduction to homogeneous bound- ary conditions
Existence of solutions
Inhomogeneous boundary conditions
Problems
3. The Neumann Boundary-Value Problem. A Trace Theorem
Ellipticity in H
Boundary-value problems with natural bound-ary conditions
Neumann boundary conditions
Mixed boundary conditions
Proof of the trace theorem
Practi- cal consequences of the trace theorem
Problems
4. The Ritz-Galerkin Method and Some Finite Elements
Model problem
Problems
5. Some Standard Finite Elements
Requirements on the meshes
Significance of the differentia-bility properties
Triangular elements with complete polyno-mials
Remarks on Cl elements
Bilinear elements
Quadratic rectangular elements
Affine families
Choiceof an element
Problems
6. Approximation Properties
The Bramble-Hilbert lemma
Triangular elements with com-plete polynomials
Bilinear quadrilateral elements
In-verse estimates
Clement's interpolation
Appendix: On the optimality of the estimates
Problems
7. Error Bounds for Elliptic Problems of Second Order
Remarks on regularity
Error bounds in the energy normL2 estimates
A simple Loo estimate
The L2-projector
Problems
8. Computational Considerations
Assembling the stiffness matrix
Static condensation
Complexity of setting up the matrix
Effect on the choice of a grid
Local mesh refinement
Implementation of the Neumann boundary-value problem
Problems
Chapter Ⅲ Nonconforming and Other Methods
1. Abstract Lemmas and a Simple Boundary Approximation Generalizations of Cea's lemma
Duality methods
The Crouzeix-Raviart element
A simple approximation to curved boundaries
Modifications of the duality argument
Problems
2. Isoparametric Elements
Isoparametric triangular elements
Isoparametric quadrilateral elements
Problems
3. Further Tools from Functional Analysis
Negative norms
Adjoint operators
An abstract exis- tence theorem
An abstract convergence theorem
Proof of Theorem 3.4
Problems
4. Saddle Point Problems
Saddle points and minima
The inf-sup condition
Mixed finite element methods
Fortin interpolation
……
Chapter Ⅳ The Conjugate Gradient Method
Chapter Ⅴ Multigrid Methods
Chapter Ⅵ Finite Elements in Solid Mechanics
前言/序言
教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 電子書 下載 2024
教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] 下載 epub mobi pdf txt 電子書
教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] mobi pdf epub txt 電子書 下載 2024
評分
☆☆☆☆☆
This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
評分
☆☆☆☆☆
書很好,全新正版。快遞更是飛一般的快,特彆是書的內容很好,我是看瞭內容介紹覺得非常好結閤最新的流行資訊進行選題策劃和執行。同時自己也會站在讀者的角度審視自己的選題策劃是否具有可讀性和時效性。點評該求職者清晰地錶達瞭自己以顧客需求為導嚮(以讀者想瞭解什麼為標準)的原則,嚮麵試官展現瞭自己敏銳的市場眼光和服務意識。該求職者正確地認識自己的産品(服務)定位和目標客戶群,能針對目標客戶群采用問捲、訪問等方法瞭解不斷變化的需求。尤其在迴答中體現瞭站在顧客角度考慮問題的意識,易博得麵試官的好感。案例(2)麵試官很多谘詢顧問對於一個客戶給齣的問題解決方案都會很類似,你認為你區彆於其他谘詢顧問的特點是什麼求職者我認為我同其他谘詢顧問的最大區彆是我能夠盡可能地站在客戶的角度,考慮客戶對解決方案的吸收理解程度和這個方案的可行性。麵試官能否具體談談你是如何為客戶考慮的求職者在進行谘詢項目時,提供給客戶的解決方案可能隻是一個結果,客戶往往不能理解我們如何得齣這樣的解決方案。我會為客戶解釋我們的信息來源、評價標準以及為什麼執行這樣的方案是能夠得到最佳效果的,讓客戶充分瞭解我們為他提供的是最理想的解決方案。同時我們也會讓他們的員工瞭解解決方案産生的過程,並在培訓時指導他們解決這類問題的技能,使得他們在以後遇到相同問題時可以迅速獨立地解決。麵試官能否舉一個具體的例子求職者例如,在××公司績效考評方案改進項目中,我們首先為該公司員工進行績效考評概念與原則的培訓,讓該公司相關管理人員充分瞭解績效管理的方法。最新修訂版!增加瞭關於員工能力素質要求、麵試類型、麵試流程、麵試官提問方式及麵試最難問題的精彩解答。揭示瞭世界500強選人、用人的標準和操作方法,包括500強最常用的20個員工能力素質要求的具體行為描述。收集瞭寶潔、匯豐銀行、聯閤利華、英特爾、普華永道等各行業世界知名企業在中國近幾年的麵試實錄。世界500強通用選人標準與在華實踐的真實記錄不錯過書的三大理由為人力資源工作者提供瞭可資參考藉鑒的選拔人纔的標準,並對具體選纔標準做瞭詳細的行為分析。讓求職者瞭解企業對員工的能力素質要求,幫助求職者掌握應聘技巧和方法,並提供大量素材以供求職者學習和藉鑒。世界500強麵試實錄(第2版)所提供的20種員工能力素質要求的具體行為描述是企業對員工行為規範的一種概括總結,可以作為員工培訓發展的標準行為準則。世界500強麵試實錄(第2版)最適閤三種人閱讀人力資源工作者的實用工作手冊求職者的最佳指導工具員工培訓發展的標準行為準則世界500強企業經過多年的發展,積纍瞭大量有關人力資源開發的理論基礎及實務經驗,因此他們的
評分
☆☆☆☆☆
質量不錯,價格優惠!
評分
☆☆☆☆☆
分析單元的力學性質
評分
☆☆☆☆☆
根據單元的材料性質、形狀、尺寸、節點數目、位置及其含義等,找齣單元節點力和節點位移的關係式,這是單元分析中的關鍵一步。此時需要應用彈性力學中的幾何方程和物理方程來建立力和位移的方程式,從而導齣單元剛度矩陣,這是有限元法的基本步驟之一。
評分
☆☆☆☆☆
This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
評分
☆☆☆☆☆
質量不錯,價格優惠!
評分
☆☆☆☆☆
The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.
評分
☆☆☆☆☆
在解偏微分方程的過程中, 主要的難點是如何構造一個方程來逼近原本研究的方程, 並且該過程還需要保持數值穩定性.目前有許多處理的方法, 他們各有利弊. 當區域改變時(就像一個邊界可變的固體), 當需要的精確度在整個區域上變化, 或者當解缺少光滑性時, 有限元方法是在復雜區域(像汽車和輸油管道)上解偏微分方程的一個很好的選擇. 例如, 在正麵碰撞仿真時, 有可能在"重要"區域(例如汽車的前部)增加預先設定的精確度並在車輛的末尾減少精度(如此可以減少仿真所需消耗); 另一個例子是模擬地球的氣候模式, 預先設定陸地部分的精確度高於廣闊海洋部分的精確度是非常重要的.[1]
教學經典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 電子書 下載 2024