教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf  mobi txt 电子书 下载

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025


简体网页||繁体网页
[德] 布拉文斯(Braess D.) 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-11

商品介绍



出版社: 世界图书出版公司
ISBN:9787510042850
版次:3
商品编码:11004217
包装:平装
外文名称:Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics
开本:24开
出版时间:2012-03-01
用纸:胶版纸
页数:365###

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
The discussion of saddle point problems is a lughlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena.
The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

内页插图

目录

Preface to the Third English Edition
Preface to the First English Edition
Preface to the German Edition
Notation
Chapter Ⅰ Introduction
1. Examples and Classification of PDE's
Examples
Classification of PDE's
Well-posed problems
Problems
2. The Maximum Ptinciple
Examples
Corollaries
Problem
3. Finite Difference Methods
Discretization
Discrete maximum principle
Problem
4. A Convergence Theory for Difference Methods
Consistency
Local and global error
Limits of the con-vergence theory
Ptoblems

Chapter Ⅱ Conforming Finite Elements
1. Sobolev Spaces
Introduction to Sobolev spaces
Friedrichs' inequality
Possible singularities of H1 functions
Compact imbeddings
Problems
2. Variational Formulation of Elliptic Boundary-Value Problems of Second Order
Variational formulation
Reduction to homogeneous bound- ary conditions
Existence of solutions
Inhomogeneous boundary conditions
Problems
3. The Neumann Boundary-Value Problem. A Trace Theorem
Ellipticity in H
Boundary-value problems with natural bound-ary conditions
Neumann boundary conditions
Mixed boundary conditions
Proof of the trace theorem
Practi- cal consequences of the trace theorem
Problems
4. The Ritz-Galerkin Method and Some Finite Elements
Model problem
Problems
5. Some Standard Finite Elements
Requirements on the meshes
Significance of the differentia-bility properties
Triangular elements with complete polyno-mials
Remarks on Cl elements
Bilinear elements
Quadratic rectangular elements
Affine families
Choiceof an element
Problems
6. Approximation Properties
The Bramble-Hilbert lemma
Triangular elements with com-plete polynomials
Bilinear quadrilateral elements
In-verse estimates
Clement's interpolation
Appendix: On the optimality of the estimates
Problems
7. Error Bounds for Elliptic Problems of Second Order
Remarks on regularity
Error bounds in the energy normL2 estimates
A simple Loo estimate
The L2-projector
Problems
8. Computational Considerations
Assembling the stiffness matrix
Static condensation
Complexity of setting up the matrix
Effect on the choice of a grid
Local mesh refinement
Implementation of the Neumann boundary-value problem
Problems

Chapter Ⅲ Nonconforming and Other Methods
1. Abstract Lemmas and a Simple Boundary Approximation Generalizations of Cea's lemma
Duality methods
The Crouzeix-Raviart element
A simple approximation to curved boundaries
Modifications of the duality argument
Problems
2. Isoparametric Elements
Isoparametric triangular elements
Isoparametric quadrilateral elements
Problems
3. Further Tools from Functional Analysis
Negative norms
Adjoint operators
An abstract exis- tence theorem
An abstract convergence theorem
Proof of Theorem 3.4
Problems
4. Saddle Point Problems
Saddle points and minima
The inf-sup condition
Mixed finite element methods
Fortin interpolation
……
Chapter Ⅳ The Conjugate Gradient Method
Chapter Ⅴ Multigrid Methods
Chapter Ⅵ Finite Elements in Solid Mechanics

前言/序言



教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] 下载 epub mobi pdf txt 电子书 2025

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2025

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] mobi pdf epub txt 电子书 下载 2025

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数。

评分

这个不要买

评分

还没看,不错吧!

评分

物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。

评分

没看呢呵呵

评分

在解偏微分方程的过程中, 主要的难点是如何构造一个方程来逼近原本研究的方程, 并且该过程还需要保持数值稳定性.目前有许多处理的方法, 他们各有利弊. 当区域改变时(就像一个边界可变的固体), 当需要的精确度在整个区域上变化, 或者当解缺少光滑性时, 有限元方法是在复杂区域(像汽车和输油管道)上解偏微分方程的一个很好的选择. 例如, 在正面碰撞仿真时, 有可能在"重要"区域(例如汽车的前部)增加预先设定的精确度并在车辆的末尾减少精度(如此可以减少仿真所需消耗); 另一个例子是模拟地球的气候模式, 预先设定陆地部分的精确度高于广阔海洋部分的精确度是非常重要的.[1]

评分

根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。

评分

不错,慢慢学习

评分

The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025

类似图书 点击查看全场最低价

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] epub pdf mobi txt 电子书 下载 2025


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有