錢先生的遺-作,從錢先生的《解題之道》瞭解錢先生的,從中獲益匪淺。這些著述凝結瞭作者的心力。
評分 評分 評分1,積分的物理與幾何背景、Riemann積分的定義、Riemann可積函數、可積函數空間、Lebesgue定理、Riemann積分積分區間的可加性、積分的估計、積分中值定理、一些重要的積分不等式。
評分7,含參變量積分的定義、含參變量積分的連續性與可微性、含參變量積分的積分、含參變量廣義積分的一緻收斂性、含參變量廣義積分的一緻收斂的判彆法、反常積分號下取極限、含參變量廣義積分的連續性與可微性、含參變量廣義積分的積分。
評分10,有限增量定理、連續可微映射、中值定理、映射的高階微分與偏導數、高階微分的運算、映射的Taylor公式、映射的局部極值、、切平麵、法嚮量、切嚮量。
評分8,乘積拓撲、乘積空間、Tychonoff乘積定理、連通的拓撲空間、商拓撲、Alexandroff定理、粘閤拓撲、完備的度量空間、度量空間的完備化、閉球套引理、第一綱集與第二綱集、Baire綱定理、拓撲空間上的映射的極限、拓撲空間上的映射的連續與一緻連續、二重極限與纍次極限、壓縮映像原理。
評分2,變上限的積分、Newton-Leibniz公式、定積分的分部積分與變量替換、積分餘項的Talyor公式、麵積原理、一元積分學的應用。
評分8,Lebesgue可測函數、可測性與可積性之間的關係、Lebesgue積分號下取極限、交換積分順序、Lebesgue測度、Lebesgue可測集、平方可積函數集、Riesz-Fischer定理。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有