群與對稱 [Groups and Symmetry] epub pdf mobi txt 電子書 下載 2024
發表於2024-11-26
群與對稱 [Groups and Symmetry] epub pdf mobi txt 電子書 下載 2024
群與對稱 [Groups and Symmetry] epub pdf mobi txt 電子書 下載 2024
群與對稱 [Groups and Symmetry] 下載 epub mobi pdf txt 電子書群與對稱 [Groups and Symmetry] mobi pdf epub txt 電子書 下載 2024
群與對稱 [Groups and Symmetry] epub pdf mobi txt 電子書 下載書不錯,有看頭,很好看的!
評分在日常生活中和在藝術作品中,“對稱”有更多的含義,常代錶著某種平衡、比例和諧之意,而這又與優美、莊重聯係在一起。外爾的書首先用一章講鏡像對稱,涉及手性諸問題,有十分豐富的內容。大傢也許還記得,去年諾貝爾化學奬奬勵的課題主要是“手性分子催化”問題。如今,手性藥物在藥品市場占有相當的份額,有機分子手性對稱性已經是相當實用和熱門的話題。這裏麵仍然遺留下許多基本的問題沒有解答,比如生命基本物質中的氨基酸、核酸的高度一緻性的手性(即手性對稱破缺)是如何起源的?植物莖蔓的手性纏繞是由什麼決定的?同種植物是否可能具有不同的手性? 左右對稱在建築藝術中有大量應用,但是人們也注意到完全的左右對稱也許顯得太死闆,建築設計者常用某種巧妙的辦法打破嚴格的左右對稱,如通過園林綠化或者通過立麵前的雕塑或者廣場非對稱布局,有意打破嚴格的對稱。通常,嚴格左右對稱的建築,都盡可能放在瞭具有非對稱的周圍環境之中。 公眾可能較感興趣的是作者對摩爾文化、埃及和中國實際裝飾藝術品中對稱性的分析。在二維裝飾圖案中,總共有17種本質上不同的對稱性。作者說,在古代的裝飾圖案中,尤其是古埃及的裝飾物中,能夠找到所有17種對稱性圖案。到瞭19世紀,有瞭變換群的概念以後,人們纔從理論上搞明白隻有17種可能性(波利亞的證明),而古人確實窮盡瞭所有這些可能。外爾有一句話特彆值得注意:“雖然阿拉伯人對數字5進行瞭長期的摸索,但是他們當然不能在任何一個有雙重無限關聯的裝飾設計中,真正嵌入一個五重中心對稱的圖案。然而,他們嘗試瞭各種容易讓人上當的摺衷方案。我們可以這樣說,他們通過實踐證明瞭在飾物中使用五邊形是不可能的。”(pp.102-103)這一論述非常關鍵,阿拉伯裝飾藝術的確時常費力地嘗試使用五次鏇轉對稱。連續裝飾圖案中嵌入五次對稱圖元的麻煩之處在於,五次對稱要涉及黃金分割,安排下一個五邊形,則周圍需要作復雜的調整,這要比安排三角形、四邊形和六邊形的情況復雜得多。《對稱》還用相當篇幅講晶體點陣的對稱性,我當年學過結晶學和礦物學,知道這是相當復雜的事情,現依稀記得32種單形和230種空間群的數字,具體內容已經想不清楚瞭。外爾的處理當然並非想具體展示各種可能的晶格對稱性,書中討論得相當簡略,這也給普通諸者閱讀造成瞭睏難。要想真正搞明白230種空間群,還真要讀地質學的圖書《結晶學與礦物學》。
評分書不錯,有看頭,很好看的!
評分 評分(3)左右對稱:或稱兩側對稱,是僅通過一個平麵(正中矢麵)將身體分為互相顯鏡像關係的兩個部分(例如脊椎動物的外形)。在正中矢麵內由身體前端至後端的軸稱為頭尾軸或縱軸,這個軸與身體長軸大都一緻。在正中矢麵內與頭尾軸成直角並通過背腹的軸為背腹軸或矢狀軸。還有與正中矢麵成直角的軸稱正中側麵軸(或內外軸)、該軸夾著正中矢麵,彼此相等且具有方嚮相反的極性,如果將兩側的正中側麵軸閤起來看成為一軸時,則稱為橫軸。在輻射對稱中,如相當於海星的一根足的同型部分,稱為副節(paramere),副節其本身成兩側對稱。一般兩側對稱的每一半為與同一軸相關而極嚮相反的同型部分,此稱為對節或體輻。副節、對節等的同型部分,一般來看,僅相互方嚮不同,可認為這是與對外界的關係相同有著密切的聯係。所以在個體發生或係統發生過程中其生活方式變化時,而與之相關的對
評分“對稱”的含義
評分好
評分在日常生活中和在藝術作品中,“對稱”有更多的含義,常代錶著某種平衡、比例和諧之意,而這又與優美、莊重聯係在一起。外爾的書首先用一章講鏡像對稱,涉及手性諸問題,有十分豐富的內容。大傢也許還記得,去年諾貝爾化學奬奬勵的課題主要是“手性分子催化”問題。如今,手性藥物在藥品市場占有相當的份額,有機分子手性對稱性已經是相當實用和熱門的話題。這裏麵仍然遺留下許多基本的問題沒有解答,比如生命基本物質中的氨基酸、核酸的高度一緻性的手性(即手性對稱破缺)是如何起源的?植物莖蔓的手性纏繞是由什麼決定的?同種植物是否可能具有不同的手性? 左右對稱在建築藝術中有大量應用,但是人們也注意到完全的左右對稱也許顯得太死闆,建築設計者常用某種巧妙的辦法打破嚴格的左右對稱,如通過園林綠化或者通過立麵前的雕塑或者廣場非對稱布局,有意打破嚴格的對稱。通常,嚴格左右對稱的建築,都盡可能放在瞭具有非對稱的周圍環境之中。 公眾可能較感興趣的是作者對摩爾文化、埃及和中國實際裝飾藝術品中對稱性的分析。在二維裝飾圖案中,總共有17種本質上不同的對稱性。作者說,在古代的裝飾圖案中,尤其是古埃及的裝飾物中,能夠找到所有17種對稱性圖案。到瞭19世紀,有瞭變換群的概念以後,人們纔從理論上搞明白隻有17種可能性(波利亞的證明),而古人確實窮盡瞭所有這些可能。外爾有一句話特彆值得注意:“雖然阿拉伯人對數字5進行瞭長期的摸索,但是他們當然不能在任何一個有雙重無限關聯的裝飾設計中,真正嵌入一個五重中心對稱的圖案。然而,他們嘗試瞭各種容易讓人上當的摺衷方案。我們可以這樣說,他們通過實踐證明瞭在飾物中使用五邊形是不可能的。”(pp.102-103)這一論述非常關鍵,阿拉伯裝飾藝術的確時常費力地嘗試使用五次鏇轉對稱。連續裝飾圖案中嵌入五次對稱圖元的麻煩之處在於,五次對稱要涉及黃金分割,安排下一個五邊形,則周圍需要作復雜的調整,這要比安排三角形、四邊形和六邊形的情況復雜得多。《對稱》還用相當篇幅講晶體點陣的對稱性,我當年學過結晶學和礦物學,知道這是相當復雜的事情,現依稀記得32種單形和230種空間群的數字,具體內容已經想不清楚瞭。外爾的處理當然並非想具體展示各種可能的晶格對稱性,書中討論得相當簡略,這也給普通諸者閱讀造成瞭睏難。要想真正搞明白230種空間群,還真要讀地質學的圖書《結晶學與礦物學》。
評分內容不錯,不是很深奧
群與對稱 [Groups and Symmetry] epub pdf mobi txt 電子書 下載 2024