量子群入門 [A Guide to Quantum Groups] epub pdf  mobi txt 電子書 下載

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024


簡體網頁||繁體網頁
[美] 沙裏 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-22

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510005770
版次:1
商品編碼:10184614
包裝:平裝
外文名稱:A Guide to Quantum Groups
開本:24開
齣版時間:2010-04-01
用紙:膠版紙
頁數:654
正文語種:英語

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

  quantum groups first arose in the physics literature, particularly in the work of L. D. Faddeev and the Leningrad school, from the inverse scattering method, which had been developed to construct and solve integrable quantum systems. They have excited great interest in the past few years because of their unexpected connections with such, at first sight, unrelated parts of mathematics as the construction of knot invariants and the representation theory of algebraic groups in characteristic p.
  In their original form, quantum groups are associative algebras whose defin-ing relations are expressed in terms of a matrix of constants (depending on the integrable system under consideration) called a quantum R-matrix. It was realized independently by V. G. Drinfeld and M. Jimbo around 1985 that these algebras are Hopf algebras, which, in many cases, are deformations of universal enveloping algebras of Lie algebras. A little later, Yu. I. Manin and S. L. Woronowicz independently constructed non-commutative deforma-tions of the algebra of functions on the groups SL2(C) and SU2, respectively,and showed that many of the classical results about algebraic and topological groups admit analogues in the non-commutative case.

作者簡介

作者:(美國)沙裏(Chari.V.)

內頁插圖

目錄

Introduction
1 Poisson-Lie groups and Lie bialgebras
1.1 Poisson manifolds
A Definitions
B Functorial properties
C Symplectic leaves
1.2 Poisson-Lie groups
A Definitions
B Poisson homogeneous spaces
1.3 Lie bialgebras
A The Lie bialgebra of a Poisson-Lie group
B Martintriples
C Examples
D Derivations
1.4 Duals and doubles
A Duals of Lie bialgebras and Poisson-Lie groups
B The classical double
C Compact Poisson-Lie groups
1.5 Dressing actions and symplectic leaves
A Poisson actions
B Dressing transformations and symplectic leaves
C Symplectic leaves in compact Poisson-Lie groups
D Thetwsted ease
1.6 Deformation of Poisson structures and quantization
A Deformations of Poisson algebras
BWeylquantization
C Quantization as deformation
Bibliographical notes

2 Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation
2.1 Coboundary Lie bialgebras
A Definitions
B The classical Yang-Baxter equation
C Examples
D The classical double
2.2 Coboundary Poisson-Lie groups
A The Sklyanin bracket
B r-matrices and 2-cocycles
CThe classicalR-matrix
2 3 Classical integrable systems
A Complete integrability
B Lax pairs
C Integrable systems from r-matrices
D Toda systems
Bibliographical notes

3 Solutions of the classical Yang-Baxterequation
3.1 Constant solutions of the CYBE
A The parameter space of non.skew solutions
B Description of the solutions
C Examples
D Skew solutions and quasi-Frobenins Lie algebras
3.2 Solutions of the CYBE with spectral parameters
A Clnssification ofthe solutions
B Elliptic solutions
C Trigonometrie solutions
D Rational solutions
B ibliographical notes

4 Quasitriangular Hopf algebras
4.1 Hopf algebras
A Definitions
B Examples
C Representations of Hopf algebras
D Topological Hopf algebras and duMity
E Integration Oll Hopf algebras
F Hopf-algebras
4.2 Quasitriangular Hopf algebras
A Almost cocommutative Hopf algebras
B Quasitriangular Hopf algebras
C Ribbon Hopf algebras and quantum dimension
D The quantum double
E Twisting
F Sweedler8 example
Bibliographical notes

5 Representations and quasitensor categories
5.1 Monoidal categories
A Abelian categories
B Monoidal categories
C Rigidity
D Examples
E Reconstruction theorems
5.2 Quasitensor categories
ATensorcategories
B Quasitensor categories
C Balancing
D Quasitensor categories and fusion rules
EQuasitensorcategoriesin quantumfieldtheory
5.3 Invariants of ribbon tangles
A Isotopy invariants and monoidal functors
B Tangleinvariants
CCentral ek!ments
Bibliographical notes

6 Quantization of Lie bialgebras
6.1 Deformations of Hopf algebras
A Defmitions
B Cohomologytheory
CIugiditytheorems
6.2 Quantization
A(Co-)Poisson Hopfalgebras
B Quantization
C Existence of quantizations
6.3 Quantized universal enveloping algebras
ACocommut&tiveQUE; algebras
B Quasitriangular QUE algebras
CQUE duals and doubles
D The square of the antipode
6.4 The basic example
A Constmctmn of the standard quantization
B Algebra structure
C PBW basis
D Quasitriangular structure
ERepresentations
F A non-standard quantization
6.5 Quantum Kac-Moody algebras
A The-andard quantization
B The centre
C Multiparameter quantizations Bibliographical notes

7 Quantized function algebras
7.1 The basic example
A Definition
B A basis of.fn(sL2(c))
C TheR-matrixformulation
D Duality
E Representations
7.2 R-matrix quantization
A From It-matrices to bialgebras
B From bialgebras to Hopf algebras:the quantum determinant
C solutions oftheQYBE
7.3 Examples of quantized function algebras
A The general definition
B The quantum speciallinear group
C The quantum orthogonal and symplectic groups
D Multiparameter quantized function algebras
7.4 Differential calculus on quantum groups
A The de Rham complex ofthe quantum plane
BThe deRham complex ofthe quantum m×m matrices
CThedeRhamcomplex ofthe quantum generallinear group
DInvariantforms on quantumGLm
7.5 Integrable lattice models
AVertexmodels
BTransfermatrices
……
9 Specializations of QUE algebras
10 Representations of QUE algebas the generic case
11Representations of QUE algebas the root of unity case
12 Infinite-dimensionalquantum groups
13 Quantum harmonic analysis
14 Canonical bases
15 Quantum gruop invariants f knots and 3-manifolds
16 Quasi-Hopf algebras and the Knizhnik -Zamolodchikov equation

前言/序言



量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024

量子群入門 [A Guide to Quantum Groups] 下載 epub mobi pdf txt 電子書

量子群入門 [A Guide to Quantum Groups] pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024

量子群入門 [A Guide to Quantum Groups] mobi pdf epub txt 電子書 下載 2024

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

說是入門,難度卻不小,不過書是好書

評分

數學物理工作者的好書。印刷質量很好。開本有點小。

評分

數學物理工作者的好書。印刷質量很好。開本有點小。

評分

很好的書啊很好的書啊

評分

tinghaode

評分

應該先看完其他入門的群論書再來看這本書,不然看不懂。

評分

這方麵經典的瞭,買來看看和收藏都是不錯的

評分

很好的書啊很好的書啊

評分

應該先看完其他入門的群論書再來看這本書,不然看不懂。

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024

类似图書 點擊查看全場最低價

量子群入門 [A Guide to Quantum Groups] epub pdf mobi txt 電子書 下載 2024


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有