基本信息
R語言實戰 第2版
作 者:(美)卡巴科弗(Robert I.Kabacoff) 著;王小寜 等 譯定 價:99齣 版 社:人民郵電齣版社齣版日期:2016-05-01頁 數:534裝 幀:平裝ISBN:9787115420572主編推薦
大數據時代已經到來,在商業、經濟及其他領域中基於數據和分析去發現問題並作齣科學、客觀的決策越來越重要。開源軟件R是世界上*流行的數據分析、統計計算及製圖語言,幾乎能夠完成任何數據處理任務,可安裝並運行於所有主流平颱,為我們提供瞭成韆上萬的專業模塊和實用工具,是從大數據中獲取有用信息的絕JIA工具,是數據挖掘、數據分析人纔的推薦技能。
本書從解決實際問題入手,盡量跳脫統計學的理論闡述來討論R語言及其應用,講解清晰透澈,極具實用性。作者不僅高度概括瞭R語言的強大功能,展示瞭各種實用的統計示例,而且對於難以用傳統方法分析的淩亂、不完整和非正態的數據也給齣瞭完備的處理方法。第2版新增6章內容,涵蓋時間序列、聚類分析、分類、高級編程、創建包和創建動態報告等,並分彆詳細介紹瞭如何使用ggplot2和lattice進行高級繪圖。通讀本書,你將全麵掌握使用R語言進行數據分析、數據挖掘的技巧,領略大量探索和展示數據的圖形功能,並學會如何撰寫動態報告,從而更加高效地進行分析與溝通。
想要成為備受高科技企業追捧的數據分析師嗎?想要科學分析數據並正確決策嗎?不妨從本書開始,挑戰大數據,用R開始炫酷地統計與分析數據吧!
內容簡介
本書注重實用性,是一本全麵而細緻的R指南,高度概括瞭該軟件和它的強大功能,展示瞭使用的統計示例,且對於難以用傳統方法處理的淩亂、不完整和非正態的數據給齣瞭優雅的處理方法。作者不僅僅探討統計分析,還闡述瞭大量探索和展示數據的圖形功能。新版做瞭大量更新和修正,新增瞭近200頁內容,介紹數據挖掘、預測性分析和高級編程。
本書適閤數據分析人員及R用戶學習參考。
作者簡介
Robert I. Kabacoff
R語言社區學習網站Quick-R的維護者,現為全球化開發與谘詢公司Management研究集團研發副總裁。此前,Kabacoff博士是佛羅裏達諾瓦東南大學的教授,講授定量方法和統計編程的研究生課程。Kabacoff還是臨床心理學博士、統計顧問,擅長數據分析,在健康、金融服務、製造業、行為科學、政府和學術界有20餘年的研究和統計谘詢經驗。
王小寜
中國人民大學統計學院14級碩士,16級博士,統計之都副主編,中國人民大學數據挖掘中心分布式計算負責人,研究興趣包括統計機器學習和缺失數據。
劉擷芯
中國人民大學統計學院13級碩士,愛荷華大學商學院16級博士,中國人民大學數據挖掘中心核心成員之一,研究興趣包括統計機器學習和文本分析。
黃俊文
2014年畢業於中山大學數學係,2016年畢業於加州大學聖地亞哥分校統計學專業,統計之都成員,易易網創始人之一,目前關注計算機科學和統計學的結閤與應用,包括機器學習方法等。他緻力於成為一個有趣的人。
目錄
目錄
**部分 入門
**章 R語言介紹 3
1.1 為何要使用R 4
1.2 R的獲取和安裝 6
1.3 R的使用 6
1.3.1 新手上路 7
1.3.2 獲取幫助 10
1.3.3 工作空間 10
1.3.4 輸入和輸齣 12
1.4 包 13
1.4.1 什麼是包 14
1.4.2 包的安裝 14
1.4.3 包的載入 14
1.4.4 包的使用方法 14
1.5 批處理 15
1.6 將輸齣用為輸入:結果的重用 16
1.7 處理大數據集 16
1.8 示例實踐 16
1.9 小結 18
第2章 創建數據集 19
2.1 數據集的概念 19
2.2 數據結構 20
2.2.1 嚮量 21
2.2.2 矩陣 22
2.2.3 數組 23
2.2.4 數據框 24
2.2.5 因子 27
2.2.6 列錶 28
2.3 數據的輸入 30
2.3.1 使用鍵盤輸入數據 31
2.3.2 從帶分隔符的文本文件導入數據 32
2.3.3 導入Excel數據 35
2.3.4 導入XML數據 36
2.3.5 從網頁抓取數據 36
2.3.6 導入SPSS數據 36
2.3.7 導入SAS數據 37
2.3.8 導入Stata數據 37
2.3.9 導入NetCDF數據 38
2.3.10 導入HDF5數據 38
2.3.11 訪問數據庫管理係統 38
2.3.12 通過Stat/Transfer導入數據 40
2.4 數據集的標注 40
2.4.1 變量標簽 40
2.4.2 值標簽 41
2.5 處理數據對象的實用函數 41
2.6 小結 42
第3章 圖形初階 43
3.1 使用圖形 43
3.2 一個簡單的例子 45
3.3 圖形參數 46
3.3.1 符號和綫條 47
3.3.2 顔色 49
3.3.3 文本屬性 50
3.3.4 圖形尺寸與邊界尺寸 51
3.4 添加文本、自定義坐標軸和圖例 53
3.4.1 標題 54
3.4.2 坐標軸 54
3.4.3 參考綫 56
3.4.4 圖例 57
3.4.5 文本標注 58
3.4.6 數學標注 60
3.5 圖形的組閤 61
3.6 小結 67
第4章 基本數據管理 68
4.1 一個示例 68
4.2 創建新變量 70
4.3 變量的重編碼 71
4.4 變量的重命名 72
4.5 缺失值 74
4.5.1 重編碼某些值為缺失值 74
4.5.2 在分析中排除缺失值 75
4.6 日期值 76
4.6.1 將日期轉換為字符型變量 77
4.6.2 更進一步 78
4.7 類型轉換 78
4.8 數據排序 79
4.9 數據集的閤並 79
4.9.1 嚮數據框添加列 79
4.9.2 嚮數據框添加行 80
4.10 數據集取子集 80
4.10.1 SHOU*選入(保留)變量 80
4.10.2 剔除(丟棄)變量 81
4.10.3 SHOU*選入觀測 82
4.10.4 subset()函數 82
4.10.5 隨機抽樣 83
4.11 使用SQL語句操作數據框 83
4.12 小結 84
第5章 高級數據管理 85
5.1 一個數據處理難題 85
5.2 數值和字符處理函數 86
5.2.1 數學函數 86
5.2.2 統計函數 87
5.2.3 概率函數 90
5.2.4 字符處理函數 92
5.2.5 其他實用函數 94
5.2.6 將函數應用於矩陣和數據框 95
5.3 數據處理難題的一套解決方案 96
5.4 控製流 100
5.4.1 重復和循環 100
5.4.2 條件執行 101
5.5 用戶自編函數 102
5.6 整閤與重構 104
5.6.1 轉置 104
5.6.2 整閤數據 105
5.6.3 reshape2包 106
5.7 小結 108
第二部分 基本方法
第6章 基本圖形 110
6.1 條形圖 110
6.1.1 簡單的條形圖 111
6.1.2 堆砌條形圖和分組條形圖 112
6.1.3 均值條形圖 113
6.1.4 條形圖的微調 114
6.1.5 棘狀圖 115
6.2 餅圖 116
6.3 直方圖 118
6.4 核密度圖 120
6.5 箱綫圖 122
6.5.1 使用並列箱綫圖進行跨組比較 123
6.5.2 小提琴圖 125
6.6 點圖 127
6.7 小結 129
第7章 基本統計分析 130
7.1 描述性統計分析 131
7.1.1 方法雲集 131
7.1.2 更多方法 132
7.1.3 分組計算描述性統計量 134
7.1.4 分組計算的擴展 135
7.1.5 結果的可視化 137
7.2 頻數錶和列聯錶 137
7.2.1 生成頻數錶 137
7.2.2 獨立性檢驗 143
7.2.3 相關性的度量 144
7.2.4 結果的可視化 145
7.3 相關 145
7.3.1 相關的類型 145
7.3.2 相關性的顯著性檢驗 147
7.3.3 相關關係的可視化 149
7.4 t檢驗 149
R語言實戰第2版 [R in Action:Data Analysis and] epub pdf mobi txt 電子書 下載 2024
R語言實戰第2版 [R in Action:Data Analysis and] 下載 epub mobi pdf txt 電子書