引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf  mobi txt 电子书 下载

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
[美] 哈蒂(Hartle J.B.) 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-31

商品介绍



出版社: 世界图书出版公司
ISBN:9787506291781
版次:1
商品编码:10175889
包装:平装
外文名称:AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY
开本:16开
出版时间:2008-09-01
用纸:胶版纸
页数:582
正文语种:英语

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

  Einstein的广义相对论是现代物理的基石。它包括了大量讲述时空的前沿话题,黑洞、重力波以及宇宙学。随着广义相对论越来越成为同时代物理和天文学的中心,其在本科教育中的地位也显得尤为重要。这本全新的教材很适合本科生作为了解该课程的基础理论。物理优先、数学理论尽可能少、大量的应用实例,作者为物理学家和对该学科感兴趣的读者自然顺畅的讲述了这门学科。
  读者对象:《引力》适用于物理专业的本科生,研究生以及对该学科感兴趣的广大读者。
  目次:(第一部分)牛顿物理和狭义相对论中的时空:引力物理;几何作为物理;牛顿物理中的空间;时间和引力;狭义相对论原理;狭义相对论力学; (第二部分)广义相对论的弯曲时空:引力作为几何;弯曲时空的描述;测地线;球形星体外的几何;广义相对论的太阳系检验;实用相对论引力;引力坍缩和黑洞;天体物理学黑洞;微小转动;旋转黑洞;引力波;宇宙观察;宇宙学模型;什么是宇宙以及为什么;(第三部分)Einstein方程:数学部分;曲率和Einstein方程;曲率源;引力波发射;相对论星体。

内页插图

目录

Preface
PART I SPACE AND TIME IN NEWTONIAN PHYSICS AND SPECIAL RELATIVITY
1 Gravitational Physics
2 Geometry as Physics
2.1 Gravity Is Geometry
2.2 Experiments in Geometry
2.3 Different Geometries
2.4 Specifying Geometry
2.5 Coordinates and Line Element
2.6 Coordinates and Invariance

3 Space, Time, and Gravity in Newtonian Physics
3.1 Inertial Frames
3.2 The Principle of Relativity
3.3 Newtonian Gravity
3.4 Gravitational and Inertial Mass
3.5 Variational Principle for Newtonian Mechanics

4 Principles of Special Relativity
4.1 The Addition of Velocities and the Michelson-Morley Experiment
4.2 Einsteins Resolution and Its Consequences
4.3 Spacetime
4.4 Time Dilation and the Twin Paradox
4.5 Lorentz Boosts
4.6 Units

5 Special Relativistic Mechanics
5.1 Four-Vectors
5.2 Special Relativistic Kinematics
5.3 Special Relativistic Dynamics
5.4 Variational Principle for Free Particle Motion
5.5 Light Rays
5.6 Observers and Observations

PART Ⅱ THE CURVED SPACETIMES OF GENERAL RELATIVITY
6 Gravity as Geometry
6.1 Testing the Equality of Gravitational and Inertial Mass
6.2 The Equivalence Principle
6.3 Clocks in a Gravitational Field
6.4 The Global Positioning System
6.5 Spacetime Is Curved
6.6 Newtonian Gravity in Spacetime Terms

7 The Description of Curved Spacetime
7.1 Coordinates
7.2 Metric
7.3 The Summation Convention
7.4 Local Inertial Frames
7.5 Light Cones and World Lines
7.6 Length, Area, Volume, and Four-Volume for Diagon Metrics
7.7 Embedding Diagrams and Wormholes
7.8 Vectors in Curved Spacetime
7.9 Three-Dimensional Surfaces in Four-Dimensional Spacetime

8 Geodesics
8.1 The Geodesic Equation
8.2 Solving the Geodesic Equation——-Symmetries and Conservation Laws
8.3 Null Geodesics
8.4 Local Inertial Frames and Freely Falling Frames

9 The Geometry Outside a Spherical Star
9.1 Schwarzschild Geometry
9.2 The Gravitational Redshift
9.3 Particle Orbits——Precession of the Perihelion
9.4 Light Ray Orbits——The Deflection and Time Delay of Light

10 Solar System Tests of General Relativity
10.1 Gravitational Redshift
10.2 PPN Parameters
10.3 Measurements of the PPN Parametery
10.4 Measurement of the PPN Parameter B-Precession of Mercurys Perihelion

11 Relativistic Gravity in Action
11.1 Gravitational Lensing
11.2 Accretion Disks Around Compact Objects
11.3 Binary Pulsars

12 Gravitational Collapse and Black Holes
12.1 The Schwarzschild Black Hole
12.2 Collapse to a Black Hole
12.3 Kruskal-Szekeres Coordinates
12.4 Nonspherical Gravitational Collapse

13 Astrophysical Black Holes
13.1 Black Holes in X-Ray Binaries
13.2 Black Holes in Galaxy Centers
13.3 Quantum Evaporation of Black Holes——Hawking Radiation

14 A Little Rotation
14.1 Rotational Dragging of Inertial Frames
14.2 Gyroscopes in Curved Spacetime
14.3 Geodetic Precession
14.4 Spacetime Outside a Slowly Rotating Spherical Body
14.5 Gyroscopes in the Spacetime of a Slowly Rotating Body
14.6 Gyros and Freely Falling Frames

15 Rotating Black Holes
15.1 Cosmic Censorship
15.2 The Kerr Geometry
15.3 The Horizon of a Rotating Black Hole
15.4 Orbits in the Equatorial Plane
15.5 The Ergosphere

16 Gravitational Waves
16.1 A Linearized Gravitational Wave
16.2 Detecting Gravitational Waves
16.3 Gravitational Wave Polarization
16.4 Gravitational Wave Interferometers
16.5 The Energy in Gravitational Waves

17 The Universe Observed
17.1 The Composition of the Universe
17.2 The Expanding Universe
17.3 Mapping the Universe

18 Cosmological Models
18.1 Homogeneous, Isotropic Spacetimes
18.2 The Cosmological Redshift
18.3 Matter, Radiation, and Vacuum
18.4 Evolution of the Flat FRW Models
18.5 The Big Bang and Age and Size of the Universe
18.6 Spatially Curved Robertson-Walker Metrics
18.7 Dynamics of the Universe

19 Which Universe and Why?
19.1 Surveying the Universe
19.2 Explaining the Universe

PART III THE EINSTEIN EQUATION
20 A Little More Math
20.1 Vectors
20.2 Dual Vectors
20.3 Tensors
20.4 The Covariant Derivative
20.5 Freely Falling Frames Again

21 Curvature and the Einstein Equation
21.1 Tidal Gravitational Forces
21.2 Equation of Geodesic Deviation
21.3 Riemann Curvature
21.4 The Einstein Equation in Vacuum
21.5 Linearized Gravity

22 The Source of Curvature
22.1 Densities
22.2 Conservation
22.2 Conservation of Energy-Momentum
22.3 The Einstein Equation
22.4 The Newtonian Limit

23 Gravitational Wave Emission
23.1 The Linearized Einstein Equation with Sources
23.2 Solving the Wave Equation with a Source
23.3 The General Solution of Linearized Gravity
23.4 Production of Weak Gravitational Waves
23.5 Gravitational Radiation from Binary Stars
23.6 The Quadrupole Formula for the Energy Loss in Gravitational Waves
23.7 Effects of Gravitational Radiation Detected in a Binary Pulsar
23.8 Strong Source Expectations

24 Relativistic Stars
24.1 The Power of the Pauli Principle
24.2 Relativistic Hydrostatic Equilibrium
24.3 Stellar Models
24.4 Matter in Its Ground State
24.5 Stability
24.6 Bounds on the Maximum Mass of Neutron Stars

APPENDIXES
A Units
A.1 Units in General
A.2 Units Employed in this Book
B Curvature Quantities
C Curvature and the Einstein Equation
D Pedagogical Strategy
D.1 Pedagogical Principles
D.2 Organization
D.3 Constructing Courses
Bibliography
Index

前言/序言

  ~Einsteins relativistic theory of gravitation——general relativity——will shortly be acentury old. At its core is one of the most beautiful and revolutionary conceptionsof modem science——the idea that gravity is the geometry of four-dimensionalcurved spacetime. Together with quantum theory, general relativity is one of thetwo most profound developments of twentieth-century physics.  General relativity has been accurately tested in the solar system. It underliesour understanding of the universe on the largest distance scales, and is centralto the explanation of such frontier astrophysical phenomena as gravitational col-lapse, black holes, X-ray sources, neutron stars, active galactic nuclei, gravita-tional waves, and the big bang. General relativity is the intellectual origin of manyideas in contemporary elementary particle physics and is a necessary prerequisiteto understanding theories of the unification of all forces such as string theory.  An introduction to this subject, so basic, so well established, so central to sev-eral branches of physics, and so interesting to the lay public is naturally a partof the education of every undergraduate physics major. Yet teaching general rel-ativity at an undergraduate level confronts a basic problem. The logical order ofteaching this subject (as for most others) is to assemble the necessary mathemati-cal tools, motivate the basic defining equations, solve the equations, and apply thesolutions to physically interesting circumstances. Developing the tools of differ-ential geometry, introducing the Einstein equation, and solving it is an elegant andsatisfying story. But it can also be a long one, too long in fact to cover both thatand introduce the many con~~temporary applications in the time that is typicallyavailable for an introductory undergraduate course.  Gravity introduces general relativity in a different order. The principles onwhich it is based are discussed at greater length in Appendix D, but essentiallythe strategy is the following: The simplest physically relevant solutions of theEinstein equation are presented first, without derivation, as spacetimes whose ob-servational consequences are to be explored by the study of the motion of testparticles and light rays in them. This

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] 下载 epub mobi pdf txt 电子书 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] mobi pdf epub txt 电子书 下载 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

写得易懂,非常不错的书

评分

好!!!!!!!!!!

评分

活动买的,价格比较合适

评分

引力所有物质,之间互相存在的吸引力,与物体的质量有关。物体如果距离过近会产生一定的斥力。引力为什么产生,牛顿发现了引力问题,是他在思考问题时被苹果砸在头上。想到了引力的问题。但是对为什么产生引力目前没有解释。引力的产生与质量的产生是联系在一起的,质量是由空间的变化产生的一种效应,引力附属质量的产生而出现。引力定律:两物体间的引力与它们的质量成正比,与距离的平方成反比。引力是质点吸引其他质点而本身受到的力。

评分

评分

很喜欢深入浅出的书籍大致翻了翻,数学内容较多,和另一本英文引力对应看,毕竟一个重理论,一个重数学,都是必要的。当然这些都是针对新手来说的,若有基础的话可以只参考这本!

评分

引力是所有物质之间存在的相互吸引的力,即万有引力,与物体的质量有关,运算公式:F=GMm╱R^2。引力是怎么产生的?牛顿发现了引力问题,是他在思考问题时被苹果砸在头上(经确定是杜撰的)想到了引力的问题。

评分

很经典的书,相对论的权威教材

评分

还行

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有