内容简介
《分析1(影印版)》第一卷的内容包括集合与函数、离散变量的收敛性、连续变量的收敛性、幂函数、指数函数与三角函数;第二卷的内容包括Fourier级数和Fourier积分以及可以通过Fourier级数解释的Weierstrass的解析函数理论。
《分析1(影印版)》是作者在巴黎第七大学讲授分析课程数十年的结晶,其目的是阐明分析是什么,它是如何发展的。《分析1(影印版)》非常巧妙地将严格的数学与教学实际、历史背景结合在一起,对主要结论常常给出各种可能的探索途径,以使读者理解基本概念、方法和推演过程。作者在《分析1(影印版)》中较早地引入了一些较深的内容,如在第一卷中介绍了拓扑空间的概念,在第二卷中介绍了Lebesgue理论的基本定理和Weierstrass椭圆函数的构造。
目录
Preface
I - Sets and Functions
§1. Set Theory
1 - Membership, equality, empty set
2 - The set defined by a relation. Intersections and unions
3 - Whole numbers. Infinite sets
4 - Ordered pairs, Cartesian products, sets of subsets
5 - Functions, maps, correspondences
6 - Injections, surjections, bijections
7 - Equipotent sets. Countable sets
8 - The different types of infinity
9 - Ordinals and cardinals
§2. The logic of logicians
II - Convergence: Discrete variables
§1. Convergent sequences and series
0 - Introduction: what is a real number?
1 - Algebraic operations and the order relation: axioms of R
2 - Inequalities and intervals
3 - Local or asymptotic properties
4 - The concept of limit. Continuity and differentiability
5 - Convergent sequences: definition and examples
6 - The language of series
7 - The marvels of the harmonic series
8 - Algebraic operations on limits
§2. Absolutely convergent series
9 - Increasing sequences. Upper bound of a set of real number
10 - The function log x. Roots of a positive number
11 - What is an integral?
12 - Series with positive terms
13 - Alternating series
14 - Classical absolutely convergent series
15 - Unconditional convergence: general case
16 - Comparison relations. Criteria of Cauchy and dAlembert
17 - Infinite limits
18 - Unconditional convergence: associativity
§3. First concepts of analytic functions
19 - The Taylor series
20 - The principle of analytic continuation
21 - The function cot x and the series ∑ 1/n2k
22 - Multiplication of series. Composition of analytic functions. Formal series
23 - The elliptic functions of Weierstrass
III- Convergence: Continuous variables
§1. The intermediate value theorem
1 - Limit values of a function. Open and closed sets
2 - Continuous functions
3 - Right and left limits of a monotone function
4 - The intermediate value theorem
§2. Uniform convergence
5 - Limits of continuous functions
6 - A slip up of Cauchys
7 - The uniform metric
8 - Series of continuous functions. Normal convergence
§3. Bolzano-Weierstrass and Cauchys criterion
9 - Nested intervals, Bolzano-Weierstrass, compact sets
10 - Cauchys general convergence criterion
11 - Cauchys criterion for series: examples
12 - Limits of limits
13 - Passing to the limit in a series of functions
§4. Differentiable functions
14 - Derivatives of a function
15 - Rules for calculating derivatives
16 - The mean value theorem
17 - Sequences and series of differentiable functions
18 - Extensions to unconditional convergence
§5. Differentiable functions of several variables
19 - Partial derivatives and differentials
20 - Differentiability of functions of class C1
21 - Differentiation of composite functions
22 - Limits of differentiable functions
23 - Interchanging the order of differentiation
24 - Implicit functions
Appendix to Chapter III
1 - Cartesian spaces and general metric spaces
2 - Open and closed sets
3 - Limits and Cauchys criterion in a metric space; complete spaces
4 - Continuous functions
5 - Absolutely convergent series in a Banach space
6 - Continuous linear maps
7 - Compact spaces
8 - Topological spaces
IV - Powers, Exponentials, Logarithms, Trigonometric Functions
§1. Direct construction
1 - Rational exponents
2 - Definition of real powers
3 - The calculus of real exponents
4 - Logarithms to base a. Power functions
5 - Asymptotic behaviour
6 - Characterisations of the exponential, power and logarithmic functions
7 - Derivatives of the exponential functions: direct method
8 - Derivatives of exponential functions, powers and logarithms
§2. Series expansions
9 - The number e. Napierian logarithms
10 - Exponential and logarithmic series: direct method
11 - Newtons binomial series
12 - The power series for the logarithm
13 - The exponential function as a limit
14 - Imaginary exponentials and trigonometric functions
15 - Eulers relation chez Euler
16 - Hyperbolic functions
§3. Infinite products
17 - Absolutely convergent infinite products
18 - The infinite product for the sine function
19 - Expansion of an infinite product in series
20 - Strange identities
§4. The topology of the functions Arg(z) and Log z
Index
精彩书摘
The concept of a set10 is a primitive concept in mathematics; one can no moreprovide a definition than Euclid could define mathematically what a point is.In my youth there were those who said that a set is "a collection of objects ofthe same nature"; apart from the vicious circle (what indeed is a "collection" ?a set?),to talk of "nature" is empty and means nothing11. Certain denigratorsof the introduction of "modern math" into elementary education have beenscandalised to see that in some textbooks they have had the temerity to formthe union of a set of apples with a set of pears; never mind that a normalchild will tell you that this gives a set of fruits,or even of things,and if askedto count the number of elements of the union any moderately intelligent childcan explain to you that it does not matter that the first set consists of applesrather than oranges and the second of pears rather than dessert spoons; thefact that the Louvre Museum combines disparate collections - of pictures,sculptures,ceramics,gold work,mummies,etc. - has never troubled anyone.One calls this: to acquire the sense of abstraction.
The logicians have in any case long since invented a radical method ofeliminating questions concerning the "nature" of mathematical objects orsets (the two terms are synonymous). One can describe this in a figurativeway by saying that a set is a "primary" box containing "secondary" boxes,its elements,no two of which have identical contents,which in their turncontain "tertiary" boxes themselves containing... The Louvre is a collectionof collections (of paintings,sculptures,etc.),the collection of paintings isitself a collection of paintings stolen by Bonaparte,Monge and Berthollet inItaly (we unfortunately had to return it in 1815),bequeathed by ... privatecollectors,bought at sales,etc.
天元基金影印数学丛书:分析1(影印版) [AnalysisⅠ] epub pdf mobi txt 电子书 下载 2024
天元基金影印数学丛书:分析1(影印版) [AnalysisⅠ] 下载 epub mobi pdf txt 电子书 2024