Assuming only an elementary background in discrete mathematics, this textbook is an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It includes random sampling, expectations, Markov's and Chevyshev's inequalities, Chernoff bounds, balls and bins models, the probabilistic method, Markov chains, MCMC, martingales, entropy, and other topics. The book is designed to accompany a one- or two-semester course for graduate students in computer science and applied mathematics.
##配閤 randomized algorithms 來看,裏麵有些相同的內容
評分 評分 評分 評分##這門課讓我深切意識到自己的數學已經荒廢到瞭什麼程度,另外目前還沒有看到這本書中的算法在自己研究中有什麼用處...
評分##完全因為封麵好看去讀的
評分 評分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有