R数据挖掘入门 epub pdf  mobi txt 电子书 下载

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
[日] 山本义郎,藤野友和,久保田贵文 著,朱建春 译

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-24

商品介绍



出版社: 人民邮电出版社
ISBN:9787115478788
版次:1
商品编码:12342236
包装:平装
丛书名: 图灵程序设计丛书
开本:大32开
出版时间:2018-03-01
用纸:胶版纸
页数:198
正文语种:中文

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

编辑推荐

1.从理论基础到实例应用,边学习边实践!
2.网罗数据挖掘中10种经典、常用的方法!
回归分析/Logistic回归分析/决策树分析/支持向量机/记忆基础推理/聚类分析/自组织映射/主成分分析/对应分析/关联规则分析
3.图文并茂,示例丰富,结合可下载的R代码和数据,让你亲自体验数据挖掘的流程!

如何预测邮件是否为垃圾邮件?
如何判断顾客会同时购买哪些商品?
如何根据股价数据判断经济的景气程度?
如何从SNS获取数据并分析?
……
大数据时代,必须了解数据挖掘!
本书首先介绍R的基础知识以及使用R进行数据挖掘的流程;然后结合具体示例、代码和图表介绍数据挖掘的10种常用方法;* 后介绍数据挖掘的实战案例,涉及多种方法的比较以及实际的大规模数据的分析。本书详略得当,脉络清晰,让你轻松入门数据挖掘。

内容简介

本书使用R,结合大量实例,详细介绍了数据挖掘的理论和分析方法。全书分为3部分:* 1部分简单介绍了使用R进行数据挖掘的流程和数据挖掘的概要;* 2部分介绍了数据挖掘的10种常用方法,并在此基础上使用R实际进行数据挖掘;第3部分结合实际的数据挖掘事例介绍了如何使用这些方法。本书适合数据挖掘的初学者,以及正在从事数据分析相关工作,想了解更多分析方法的读者阅读。

作者简介

山本义郎(作者)
日本东海大学理学部数学系教授。著有《统计数据的可视化》《统计学序论》《概率统计序论 第 2版》(合著)。执笔本书* 2章、第6章、第9章、* 11章、* 12章、* 13章。
藤野友和(作者)
日本福冈女子大学国际文理学部讲师。著有《统计数据的可视化》(合著)。执笔本书* 1章、第3章、第4章、第8章。
久保田贵文(作者)
日本多摩大学经营信息学部副教授。执笔本书第5章、第7章、* 10章、* 14章。
朱建春(译者)
毕业于北京大学计算机系,曾在联想集团任职多年,是国内较早从事Windows掌上电脑和智能手机的系统和应用软件开发的IT工作者。后长期担任对日软件外包开发项目经理。

目录

第I部分 使用R进行数据挖掘的准备 1
* 1章 基于R的数据分析入门..............................................................3
1.1 R及RStudio的安装..................................................................................4
1.2 RStudio的基本操作...................................................................................6
1.3 R语言入门.................................................................................................10
1.3.1 作为计算器使用的方法........................................................................10
1.3.2 向量——R的基本数据结构................................................................11
1.3.3 向量变量的赋值和运算........................................................................12
1.3.4 数组和矩阵.............................................................................................13
1.3.5 因子型.....................................................................................................15
1.3.6 列表.........................................................................................................16
1.3.7 数据框.....................................................................................................17
1.4 获取外部数据............................................................................................18
1.5 数据汇总.....................................................................................................19
1.6 安装程序包.................................................................................................21
1.7 基于dplyr程序包的数据框操作..........................................................22
1.8 数据的可视化............................................................................................25
1.8.1 柱状图.....................................................................................................26
1.8.2 直方图.....................................................................................................29
1.8.3 箱形图.....................................................................................................30
1.8.4 散点图.....................................................................................................32
1.8.5 逐层绘制的图.........................................................................................34
* 2章 数据挖掘概述..................................................................................36
2.1 大数据和数据挖掘...................................................................................36
2.2.1 业务理解(Business Understanding)..............................................37
2.2 CRISP-DM................................................................................................37
2.2.2 数据理解(Data Understanding).......................................................38
2.2.3 数据准备(Data Preparation)............................................................38
2.2.4 建模(Modeling)..................................................................................39
2.2.5 评估(Evaluation)................................................................................39
2.2.6 运用(Deployment).............................................................................39
2.3.1 数据的种类和建模................................................................................40
2.3 数据挖掘的方法........................................................................................40
2.3.2 预测和判别.............................................................................................41
2.3.3 分类和聚类.............................................................................................41
2.3.4 维规约.....................................................................................................41
2.3.5 规则发现.................................................................................................41
第II部分 数据挖掘的方法 43
第3章 回归分析............................................................................................45
3.1 一元回归分析............................................................................................45
3.2 多元回归分析............................................................................................50
第4章 Logistic回归分析..........................................................................60
4.1 数据准备.....................................................................................................60
4.2 使用一个解释变量进行预测..................................................................61
4.3 使用两个及以上的解释变量进行预测................................................67
第5章 决策树分析.......................................................................................71
5.1 使用分类树的判别...................................................................................71
5.2 使用回归树的预测...................................................................................77
第6章 支持向量机.......................................................................................81
6.1 支持向量机的概念...................................................................................81
6.2 类别预测的例子........................................................................................83
6.3 数值预测的例子........................................................................................86
第7章 记忆基础推理..................................................................................89
7.1 k* 近邻法的概念....................................................................................89
7.2 变量的基准化和标准化..........................................................................94
第8章 聚类分析............................................................................................96
8.1 聚类分析的概念........................................................................................96
8.2 层次聚类分析............................................................................................97
8.3 执行层次聚类分析...................................................................................99
8.4 可视化进阶...............................................................................................103
8.5 非层次聚类分析......................................................................................107
8.6 执行非层次聚类分析.............................................................................107
第9章 自组织映射....................................................................................110
9.1 自组织映射的概念.................................................................................110
9.2 基于自组织映射的分析实例................................................................111
9.3 基于自组织映射的分类........................................................................120
* 10章 主成分分析.................................................................................129
10.1 主成分分析的概念...............................................................................129
10.2 对象数据的准备...................................................................................132
10.3 执行主成分分析...................................................................................135
* 11章 对应分析......................................................................................141
11.1 对应分析.................................................................................................141
11.2 多重对应分析........................................................................................144
* 12章 关联规则分析............................................................................149
12.1 关联规则及其评价指标......................................................................149
12.2 关联规则分析的实例..........................................................................151
12.3 关联规则分析的应用实例..................................................................159
第III部分 数据挖掘实战 165
* 13章 对各种预测方法的评估...............

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024

R数据挖掘入门 下载 epub mobi pdf txt 电子书 2024

R数据挖掘入门 pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

R数据挖掘入门 mobi pdf epub txt 电子书 下载 2024

R数据挖掘入门 epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

R数据挖掘入门 epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有