内容简介
本书是为学习物理学的读者编写的数学基础教材,书中除了用较现代的方法处理经典的数学物理问题外,还引入了很多有较强物理应用意义的现代数学方法和思想,从涵盖的知识面来看,已远远超出通常数学物理方法教程的范围,因此可以供更大范围的读者参考选用。与第1版相比,第2版重写了许多章节,新增的章节包括代数、克里福代数的表示、纤维丛等内容.
作者简介
S. Hassani(S.哈桑尼)是美国Illinois State 大学物理系教授,本书第1版出版后受到好评,第2版重写了许多章节,新增的章节包括代数、克里福代数的表示、纤维丛和规范场等内容。
目录
Mathematical Preliminaries
1.1 Sets
1.1.1 Equivalence Relations
1.2 Maps
1.3 Metric Spaces
1.4 Cardinality
1.5 Mathematical Induction
1.6 Problems
Part Ⅰ Firute-Dimensional Vector Spaces
2 Vectors and Linear Maps
2.1 Vector Spaces
2.1.1 Subspaces
2.1.2 Factor Space
2.1.3 Direct Sums
2.1.4 Tensor Product of Vector Spaces
2.2 Inner Product
2.2.1 Orthogonality
2.2.2 The Gram-Schmidt Process
2.2.3 The Schwarz Inequality
2.2.4 Length of a Vector
2.3 Linear Maps
2.3.1 Kernel of a Linear Map
2.3.2 Linear Isomorphism
2.4 Complex Structures
2.5 Linear Functionals
2.6 Multilinear Maps
2.6.1 Determinant of a Linear Operator
2.6.2 Classical Adjoint
2.7 Problems
3 Algebras
3.1 From Vector Space to Algebra
3.1.1 General Properties
3.1.2 Homomorphisms
3.2 Ideals
3.2.1 Factor Algebras
3.3 Total Marrix Algebra
3.4 Derivation of an Algebra
3.5 Decomposition of Algebras
3.5.1 The Radical
3.5.2 Semi-simple Algebras
3.5.3 Classification of Simple Algebras
3.6 Polynomial Algebra
3.7 Problems
4 Operator Algebra
4.1 Algebra of End(V)
4.1.1 Polynonuals of Operators
4.1.2 Functions of Operators
4.1.3 Commutators
4.2 Derivatives of Operators
4.3 Conjugation of Operators
4.3.1 Hermitian Operators
4.3.2 Unitary Operators
4.4 Idempotents
4.4.1 Projection Operators
4.5 Represemation of Algebras
4.6 Problems
5 Matrices
5.1 Representing Vectors and Operators
5.2 Operations on Matrices
5.3 Orthonormal Bases
5.4 Change of Basis
5.5 Determinant of a Matrix
5.5.1 Matrix of the Classical A djoint
5.5.2 Inverse of a Matrix
5.5.3 Dual Determinant Function
5.6 The Trace
5.7 Problems
6 Spectral Decomposition
6.1 Invariant Subspaces
6.2 Eigenvalues and Eigenvectors
6.3 Upper-Triangular Representations
6.4 Complex Spectral Decomposition
6.4.1 Simultaneous Diagonalization
6.5 Functions of Operators
6.6 Real Spectral Decomposition
6.6.1 The Case of Symmetric Operators
6.6.2 The Case of Real Normal Operators
6.7 Polar Decomposition
6.8 Problems
Part Ⅱ Infinite-Dimensional Vector Spaces
7 Hilbert Spaces
7.1 The Question of Convergence
7.2 The Space of Square-Integrable Functions
7.2.1 Orthogonal Polynomials
7.2.2 Orthogonal Polynomials and Least Squares
7.3 Continuous Index
7.4 Generalized Functions
7.5 Problems
8 Classical Orthogonal Polynomials
8.1 General Properties
8.2 Classification
8.3 Recurrence Relations
8.4 Details of Specific Examples
8.4.1 Hermite Polynomials
8.4.2 Laguerre Polynomials
8.4.3 Legendre Polynomials
8.4.4 Other Classical Orthogonal Polynomials
8.5 Expansion in Terms of Orthogonal Polynomials
8.6 Generating Functions
8.7 Problems
9 Fourier Analysis
9.1 Fourier Series
9.1.1 The Gibbs Phenomenon
9.1.2 Fourier Series in Higher Dimensions
9.2 Fourier Transform
9,2.1 Fourier Transforms and Derivatives
9.2.2 The Discrete Fourier Transform
9.2.3 Fourier Transform of a Distribution
9.3 Problems
Part Ⅲ Complex Analysis
10 Complex Cakulus
10.1 Complex Functions
10.2 Analytic Functions
10.3 Conformal Maps
10.4 Integration of Complex Functions
10.5 Derivatives as Integrals
10.6 Infinite Complex Series
10.6.1 Properties of Series
10.6.2 Taylor and Laurent Series
10.7 Problems
11 Cakulus of Residues
11.1 Residues
11.2 Classification of Isolated Singularities
11.3 Evaluation of Definite Integrals
11.3.1 Integrals of Rational Functions
11.3.2 Ptoducts of Rational and Trigonometric Functions
11.3.3 Functions of Trigonometric Functions
11.3.4 Some Other Integrals
11.3.5 Principal Value of an Integral
11.4 Problems
12 Advanced Topics
12.1 Meromorphic Functions
12.2 Multivalued Functions
12.2.1 Riemann Surfaces
12.3 Analytic Continuation
12.3.1 The Schwarz Reflection Principle
12.3.2 Dispersion Relations
12.4 The Gamma and Beta Functions
12.5 Method of Steepest Descent
12.6 Problems
……
Part Ⅳ Differential Equations
Part Ⅴ Operators on Hilbert Spaces
Part Ⅵ Green's Functions
Part Ⅶ Groups and Their Representations
Part Ⅷ Tensors and Manifolds
Part Ⅸ Lie Groups and Their Applications
Part Ⅹ Fiber Bundles
References
Index
数学物理 (上册) 第2版 epub pdf mobi txt 电子书 下载 2024
数学物理 (上册) 第2版 下载 epub mobi pdf txt 电子书 2024