深度学习入门之PyTorch epub pdf  mobi txt 电子书 下载

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
廖星宇 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-06-21

商品介绍



出版社: 电子工业出版社
ISBN:9787121326202
版次:1
商品编码:12205841
品牌:Broadview
包装:平装
丛书名: 博文视点AI系列
开本:16开
出版时间:2017-09-01
用纸:胶版纸
页数:232
正文语种:中文

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

产品特色

编辑推荐

适读人群 :本书将理论和代码相结合,帮助读者更好地进入深度学习领域,适合任何对深度学习感兴趣的人。

1 作者本身也是从小白开始入门深度学习的,无论从书中内容,还是讲解思路,以及语言风格,均适合你从零开始进入深度学习这个充满魔力的世界。

2 实例简单而不简约,用到了生成对抗网络和注意力机制等目前相对前沿的深度学习技术。

3 虽然是一本入门教程,但是对原理的讲述也不含糊,清晰易懂,让读者能知其然且知其所以然。


内容简介

深度学习如今已经成为了科技领域*炙手可热的技术,在本书中,我们将帮助你入门深度学习的领域。本书将从人工智能的介绍入手,了解机器学习和深度学习的基础理论,并学习如何用PyTorch框架对模型进行搭建。通过阅读本书,你将会学习到机器学习中的线性回归和logistic回归,深度学习的优化方法,多层全连接神经网络,卷积神经网络,循环神经网络以及生成对抗网络,同时从零开始对PyTorch进行学习,了解PyTorch基础及如何用其进行模型的搭建,*后通过实战了解*前沿的研究成果和PyTorch在实际项目中的应用。

作者简介

廖星宇,目前就读于中国科学技术大学应用数学系,获得国家一等奖学金。在个人博客、知乎等平台上发布多篇关于深度学习的文章,具有一定的阅读量和人气。

目录

第1 章深度学习介绍1
1.1 人工智能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 数据挖掘、机器学习与深度学习. . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 数据挖掘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 机器学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 深度学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 学习资源与建议. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第2 章深度学习框架11
2.1 深度学习框架介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 PyTorch 介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 什么是PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 为何要使用PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 配置PyTorch 深度学习环境. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 操作系统的选择. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Python 开发环境的安装. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 PyTorch 的安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第3 章多层全连接神经网络24
3.1 热身:PyTorch 基础. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Tensor(张量) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Variable(变量) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Dataset(数据集) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 nn.Module(模组) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.5 torch.optim(优化) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 模型的保存和加载. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 线性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 一维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 多维线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 一维线性回归的代码实现. . . . . . . . . . . . . . . . . . . . . . 35
3.2.5 多项式回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 分类问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Logistic 起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Logistic 分布. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 二分类的Logistic 回归. . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 模型的参数估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.6 Logistic 回归的代码实现. . . . . . . . . . . . . . . . . . . . . . . 45
3.4 简单的多层全连接前向网络. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 模拟神经元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 单层神经网络的分类器. . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.4 神经网络的结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.5 模型的表示能力与容量. . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 深度学习的基石:反向传播算法. . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 反向传播算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Sigmoid 函数举例. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 各种优化算法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 梯度下降法的变式. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 处理数据和训练模型的技巧. . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 数据预处理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 权重初始化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 防止过拟合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 多层全连接神经网络实现MNIST 手写数字分类. . . . . . . . . . . . . . 69
3.8.1 简单的三层全连接神经网络. . . . . . . . . . . . . . . . . . . . . 70
3.8.2 添加激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.3 添加批标准化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.4 训练网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
第4 章卷积神经网络76
4.1 主要任务及起源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 卷积神经网络的原理和结构. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 全连接层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 卷积神经网络的基本形式. . . . . . . . . . . . . . . . . . . . . . 85
4.3 PyTorch 卷积模块. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 卷积层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 池化层. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 提取层结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 如何提取参数及自定义初始化. . . . . . . . . . . . . . . . . . . . 91
4.4 卷积神经网络案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.5 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 再实现MNIST 手写数字分类. . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 图像增强的方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 实现cifar10 分类. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
第5 章循环神经网络111
5.1 循环神经网络. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.1 问题介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.2 循环神经网络的基本结构. . . . . . . . . . . . . . . . . . . . . . 112
5.1.3 存在的问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 循环神经网络的变式:LSTM 与GRU . . . . . . . . . . . . . . . . . . . . 116
5.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.2 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.3 收敛性问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3 循环神经网络的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1 PyTorch 的循环网络模块. . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 实例介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 自然语言处理的应用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.1 词嵌入. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 词嵌入的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 N Gram 模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.4 单词预测的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 134
5.4.5 词性判断. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.6 词性判断的PyTorch 实现. . . . . . . . . . . . . . . . . . . . . . . 137
5.5 循环神经网络的更多应用. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.1 Many to one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.2 Many to Many(shorter) . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3 Seq2seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.4 CNN+RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
第6 章生成对抗网络144
6.1 生成模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.1.1 自动编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.2 变分自动编码器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 生成对抗网络. . . . . . . . .

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024

深度学习入门之PyTorch 下载 epub mobi pdf txt 电子书 2024

深度学习入门之PyTorch pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

深度学习入门之PyTorch mobi pdf epub txt 电子书 下载 2024

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

一批买了七本书,物流很快,书也不错

评分

一批买了七本书,物流很快,书也不错

评分

还不错,挺好的,打算好好开始学

评分

这本事是在Linux下编程的代码,写的挺好的,之后工作都是Linux系统跑的!挺好的

评分

我已经走火入魔了

评分

入门书籍,但是太薄太薄了……

评分

学习一下其他深度学习框架,看看各个有什么优缺点。书看着比较薄,挺好的。太厚了看不下去啊。

评分

本书从pytorch的几个关键模块入手,带着读着把docs过了一遍,有深度学习基础的同学可以在三天内快速使用pytorch进行深度学习研究。个人觉得写得很好,同时也感谢Facebook开源了这一个好用的深度学习框架

评分

专业必备,正本图书,脉络清晰,帮助很大,实例经典,阅读方便,很实用,科技前沿书籍,满意,五星好评。

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

深度学习入门之PyTorch epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有