對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf  mobi txt 電子書 下載

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024


簡體網頁||繁體網頁
[加] 布魯曼(Bluman G.W.) 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-26

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510086267
版次:1
商品編碼:11647752
包裝:平裝
外文名稱:Applications of Symmetry Methods to Partial Differential Equations
開本:24開
齣版時間:2015-01-01
用紙:膠版紙
頁數:389
正文語

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

  This book is a sequel to Symmetries and Integration Methods (2002), by George W. Bluman and Stephen C. Anco. It includes a significant update of the material in the last three chapters of Symmet'ries an,d Dzjjerential Equa-tions (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki Kumei. The emphasis in the present book is on how to find sys-tematically symmetries (local and nonlocal) and conservation laws (local and nonlocal) of a given PDE system and how to use systematically symmetries and conservation laws for related applications. In particular, for a given PDE system, it is shown how systematically (1) to find higher-order and nonlocal symmetries of the system; (2) to construct by direct methods its conserva- tion laws through finding sets of conservation law multipliers and formulas to obtain the fluxes of a conservation law from a known set of multipliers; (3) to determine whether it has a linearization by an invertible mapping and con- struct such a linearization when one exists from knowledge of its symmetries andlor conservation law multipliers, in the case wheii the given PDE system is nonlinear; (4) to use conservation laws to construct equivalent nonlocally related systems; (5) to use such nonlocally related systems to obtain nonlo- cal symmetries, nonlocal conservation laws and non-invertible mappings to linear systems; and (6) to construct specific solutions from reductions arising from its symmetries as well as from extensions of symmetry methods to find such reductions.
  This book is aimed at applied mathematicians; scientists and engineers interested in finding solutions of partial differential equations and is written in the style of the above-mentioned 1989 book by Bluman and Kumei. There are numerous examples involving various well-known physical and engineering PDE systems.

內頁插圖

目錄

Preface
Introduction
1 Local Transformations and Conservation Laws
1.1 Introduction
1.2 Local Transformations
1.2.1 Point transformations
1.2.2 Contact transformations
1.2.3 Higher-order transformations
1.2.4 One-parameter higher-order transformations
1.2.5 Point symmetries
1.2.6 Contact and higher-order symmetries
1.2.7 Equivalence transformations and symmetry classification
1.2.8 Recursion operators for local symmetries
1.3 Conservation Laws
1.3.1 Local conservation laws
1.3.2 Equivalent conservation laws
1.3.3 Multipliers for conservation laws.Euler operators
1.3.4 The direct method for construction of conservation laws.Cauchy-Kovalevskaya form
1.3.5 Examples
1.3.6 Linearizing operators and adjoint equations
1.3.7 Determination of fluxes of conservation laws from multipliers
1.3.8 Self-adjoint PDE systems
1.4 Noether's Theorem
1.4.1 Euler-Lagrange equations
1.4.2 Noether's formulation of Noether's theorem
1.4.3 Boyer's formulation of Noether's theorem
1.4.4 Limitations of Noether's theorem
1.4.5 Examples
1.5 Some Connections Between Symmetries and Conservation Laws
1.5.1 Use of symmetries to find new conservation laws from known conservation laws
1.5.2 Relationships among symmetries,solutions of adjoint equations,and conservation laws
1.6 Discussion

2 Construction of Mappings Relating Differential Equations
2.1 Introduction
2.2 Notations; Mappings of Infinitesimal Generators
2.2.1 Theorems on invertible mappings
2.3 Mapping of a Given PDE to a Specific Target PDE
2.3.1 Construction of non-invertible mappings
2.3.2 Construction of an invertible mapping by a point transformation
2.4 Invertible Mappings of Nonlinear PDEs to Linear PDEs Through Symmetries
2.4.1 Invertible mappings of nonlinear PDE systems(with at least two dependent variables)to linear PDE systems
2.4.2 Invertible mappings of nonlinear PDE systems(with one dependent variable)to linear PDE systems
2.5 Invertible Mappings of Linear PDEs to Linear PDEs with Constant Coefficients
2.5.1 Examples of mapping variable coefficient linear PDEs to constant coefficient linear PDEs through invertible point transformations
2.5.2 Example of finding the most general mapping of a given constant coefficient linear PDE to some constant coefficient linear PDE
2.6 Invertible Mappings of Nonlinear PDEs to Linear PDEs Through Conservation Law Multipliers
2.6.1 Computational steps
2.6.2 Examples of linearizations of nonlinear PDEs through conservation law multipliers
2.7 Discussion

3 Nonlocally Related PDE Systems
3.1 Introduction
3.2 Nonlocally Related Potential Systems and Subsystems in Two Dimensions
3.2.1 Potential systems
3.2.2 Nonlocally related subsystems
3.3 Trees of Nonlocally Related PDE Systems
3.3.1 Basic procedure of tree construction
3.3.2 A tree for a nonlinear diffusion equation
3.3.3 A tree for planar gas dynamics(PGD)equations
3.4 Nonlocal Conservation Laws
3.4.1 Conservation laws arising from nonlocally related systems
3.4.2 Nonlocal conservation laws for diffusion-convection equations
3.4.3 Additional conservation laws of nonlinear telegraph equations
3.5 Extended Tree Construction Procedure
3.5.1 An extended tree construction procedure
3.5.2 An extended tree for a nonlinear diffusion equation
3.5.3 An extended tree for a nonlinear wave equation
3.5.4 An extended tree for the planar gas dynamics equations
3.6 Discussion

4 Applications of Nonlocally Related PDE Systems
4.1 Introduction
4.2 Nonlocal Symmetries
4.2.1 Nonlocal symmetries of a nonlinear diffusion equation
4.2.2 NonlocAL symmetries of a nonlinear wave equation
4.2.3 Classification of nonlocal symmetries of nonlinear telegraph equations arising from point symmetries of potential systems
4.2.4 Nonlocal symmetries of nonlinear telegraph equations with power law nonlinearities
4.2.5 Nonlocal symmetries of the planar gas dynamics equations
4.3 Construction of Non-invertible Mappings Relating PDEs
4.3.1 Non-invertible mappings of nonlinear PDE systems to linear PDE systems
4.3.2 Non-invertible mappings of linear PDEs with variable coefficients to linear PDEs with constant coefficients.
4.4 Discussion

5 Further Applications of Symmetry Methods: Miscellaneous Extensions
5.1 Introduction
5.2 Applications of Symmetry Methods to the Construction of Solutions of PDEs
5.2.1 The classical method
5.2.2 The nonclassical method
5.2.3 Invariant solutions arising from nonlocal symmetries that are local symmetries of nonlocally related systems
5.2.4 Futrther extensions of symmetry methods for construction of solutions of PDEs connected with nonlocaUy related systems
5.3 Nonlocally Related PDE Systems in Three or More Dimensions
5.3.1 Divergence-type conservation laws and resulting potential systems
5.3.2 Nonlocally related subsystems
5.3.3 Tree construction,nonlocal conservation laws,and nonlocal symmetries
5.3.4 Lower-degree conservation laws and related potential systems
5.3.5 Examples of applications of nonlocally related systems in higher dimensions
5.3.6 Symmetries and exact solutions of the three-dimensional MHD equilibrium equations
5.4 Symbolic Software
5.4.1 An example of symbolic computation of point symmetries
5.4.2 An example of point symmetry classification
5.4.3 An example of symbolic computation of conservation laws
5.5 Discussion
References
Theorem,Corollary and Lemma Index
Author Index
Subject Index

前言/序言



對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] 下載 epub mobi pdf txt 電子書

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] mobi pdf epub txt 電子書 下載 2024

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

還不錯~~~~~~~~~~~~~

評分

不錯的東西。。。。。。。。。。。。。

評分

東西不錯。。。。。。。。。。。

評分

京東上的東西我覺得非常好,我的所有東西都在京東上麵買的,送貨速度非常快,買瞭東西就知道什麼時候來,我在京東買東西好多年瞭,京東的東西都是正品,售後服務特彆好,我太喜歡瞭!這次買的東西還是一如繼往的好,買瞭我就迫不及待的打開,確實很不錯,我真是太喜歡瞭。在京東消費很多,都成鑽石會員瞭,哈哈,以後還會買,所有的東西都在京東買,京東商城是生活首選!

評分

還不錯~~~~~~~~~~~~~

評分

經典圖書很好

評分

杜甫的思想核心是儒傢的仁政思想。他有(緻君堯舜上,再使風俗淳)的宏偉抱負。他熱愛生活,熱愛人民,熱愛祖國的太好河山。他嫉惡如仇,對朝廷的腐敗、社會生活中的黑暗現象都給予批評和揭露。他同情人民,甚至幻想著為解救人民的苦難甘願做自我犧牲。杜甫是偉大的現實主義詩人,一生寫詩一韆四百多首。它深刻地反映瞭唐代安史之亂前後20多年的社會全貌,生動地記載瞭杜甫一生的生活經曆,把社會現實與個人生活緊密結閤,達到思想內容與藝術形式的完美統一,代錶瞭唐代詩歌的最高成就。他的詩集被後代稱作(詩史)。

評分

杜甫的思想核心是儒傢的仁政思想。他有(緻君堯舜上,再使風俗淳)的宏偉抱負。他熱愛生活,熱愛人民,熱愛祖國的太好河山。他嫉惡如仇,對朝廷的腐敗、社會生活中的黑暗現象都給予批評和揭露。他同情人民,甚至幻想著為解救人民的苦難甘願做自我犧牲。杜甫是偉大的現實主義詩人,一生寫詩一韆四百多首。它深刻地反映瞭唐代安史之亂前後20多年的社會全貌,生動地記載瞭杜甫一生的生活經曆,把社會現實與個人生活緊密結閤,達到思想內容與藝術形式的完美統一,代錶瞭唐代詩歌的最高成就。他的詩集被後代稱作(詩史)。

評分

還不錯~~~~~~~~~~~~~

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024

类似图書 點擊查看全場最低價

對稱方法在偏微分方程中的應用 [Applications of Symmetry Methods to Partial Differential Equations] epub pdf mobi txt 電子書 下載 2024


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.tinynews.org All Rights Reserved. 靜思書屋 版权所有