中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024
☆☆☆☆☆
簡體網頁||
繁體網頁
[日] 石森一 等 著
下載链接在页面底部
點擊這裡下載
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
發表於2024-12-23
商品介绍
齣版社: 北京大學齣版社
ISBN:9787301251843
版次:1
商品編碼:11621112
包裝:平裝
叢書名: 中外物理學精品書係
開本:16開
齣版時間:2014-12-01
用紙:膠版紙
頁數:304
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024
类似图書 點擊查看全場最低價
相关書籍
書籍描述
編輯推薦
離散對稱在現代粒子物理中有很重要的應用,對於未來的理論發展也是很好的基礎。《中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版)》詳實而簡明,既是講義,又是手冊,其引進對於粒子物理乃至其他理論物理領域的科研工作者將起到很大的幫助作用。
內容簡介
《中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版)》首先詳細地講解離散對稱群的共軛類劃分、錶示論等相關理論,之後介紹瞭離散對稱在粒子物理標準模型以及超齣標準模型的理論上的應用。本書適閤粒子物理專業的研究生和科研工作者用作參考。
作者簡介
(日)石森一,日本東京大學教授。
目錄
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Basics of Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 13References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 SN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.1 S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 213.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 223.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 223.2 S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 273.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 273.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 29References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.1 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 354.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 354.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 37References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 T _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . . . . . 435.2 Characters andRepresentations . . . . . . . . . . . . . . . . . . . 445.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.1 DN with N Even . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 526.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 526.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 546.2 DN with N Odd . . . . . . . . . . . . . . . . . . . . . . . . . . . 566.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 566.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 566.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 576.3 D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586.4 D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 QN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617.1 QN with N = 4n . . . . . . . . . . . . . . . . . . . . . . . . . . . 617.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 627.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 627.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 627.2 QN with N = 4n+2 . . . . . . . . . . . . . . . . . . . . . . . . 647.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 647.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 647.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 657.3 Q4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667.4 Q6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 QD2N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 698.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 708.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 708.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 718.2 QD16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 Σ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 759.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 759.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 769.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 779.2 Σ(18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789.3 Σ(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809.4 Σ(50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8410 Δ(3N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8710.1 Δ(3N2) with N/3 _= Integer . . . . . . . . . . . . . . . . . . . . . 8710.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 8810.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 8910.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 8910.2 Δ(3N2) with N/3 Integer . . . . . . . . . . . . . . . . . . . . . . 9110.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 9110.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 9210.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 9310.3 Δ(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9511 TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9711.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 9711.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 9811.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 9911.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 9911.2 T7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10011.3 T13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10211.4 T19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10812 Σ(3N3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10912.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 10912.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 11012.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 11112.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 11212.2 Σ(81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12113 Δ(6N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12313.1 Δ(6N2) with N/3 _= Integer . . . . . . . . . . . . . . . . . . . . . 12313.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 12313.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 12613.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 12813.2 Δ(6N2) with N/3 Integer . . . . . . . . . . . . . . . . . . . . . . 13113.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 13113.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 13313.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 13413.3 Δ(54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13813.3.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 13813.3.2 Characters andRepresentations . . . . . . . . . . . . . . . 13913.3.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 141References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14514 Subgroups and Decompositions of Multiplets . . . . . . . . . . . . . 14714.1 S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14714.1.1 S3→Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14814.1.2 S3→Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14814.2 S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14914.2.1 S4→S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15014.2.2 S4→A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15114.2.3 S4→Σ(8) . . . . . . . . . . . . . . . . . . . . . . . . . . 15114.3 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15214.3.1 A4→Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15214.3.2 A4→Z2 ×Z2 . . . . . . . . . . . . . . . . . . . . . . . . 15314.4 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15314.4.1 A5→A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15314.4.2 A5→D5 . . . . . . . . . . . . . . . . . . . . . . . . . . 15314.4.3 A5→S3 _ D3 .
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) 下載 epub mobi pdf txt 電子書
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) mobi pdf epub txt 電子書 下載 2024
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載
讀者評價
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024
类似图書 點擊查看全場最低價
中外物理學精品書係:粒子物理學傢用非阿貝爾離散對稱導論(影印版) epub pdf mobi txt 電子書 下載 2024