又∵a、b 、c互不相等,故等号成立条件无法满足
评分本书重点讨论了Cauchy-Bunyakovsky-Schwarz捌不等式。柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
评分巧拆常数证不等式
评分全书表达简洁流畅,读者可以在较短时间内了解和掌握矩阵不等式的主要内容和主要方法 本书读者对象为高等院校高年级本科生、研究生,有关专业的教师、数学工作者及有关工程技术人员。
评分 评分1.2 奇异值分解
评分3.8 几何属性
评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有