数学物理方法(第2版)/面向21世纪课程教材 epub pdf  mobi txt 电子书 下载

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
胡嗣柱,倪光烔 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-20

商品介绍



出版社: 高等教育出版社
ISBN:9787040104721
版次:2
商品编码:10876614
包装:平装
开本:16开
出版时间:2002-07-01
用纸:胶版纸
页数:392
正文语种:中文

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

   《面向21世纪课程教材:数学物理方法(第2版)》是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。本书是在原第一版(曾获国家教委优秀教材奖)的基础上结合当前教改实际修订而成的。此次修订,保持了原书的基本结构和特色,更新了部分内容。例如,压缩了保角变换法内容,改写了积分方程一章,增添了Z变换、小波变换和非线性偏微分方程等内容;同时,对例题和习题作了适当调整,特别是补充了一些基本要求的习题。这进一步提高了本书的实用性,并能满足多层次读者学习需求。
   《面向21世纪课程教材:数学物理方法(第2版)》可作为高等学校本科物理专业的教材,也可供有关专业的研究生、教师和科技人员参考。

目录

上篇 复变函数论
第一章 复变函数和解析函数
第二章 复变函数积分柯西定理和柯西公式
第三章 复变函数级数泰勒级数和洛朗级数孤立奇点的分类
第四章 解析延拓г函数和в函数
第五章 定积分的计算
第六章 拉普拉斯变换
第七章 傅里叶变换和色散关系
第八章 线性常微分方程的级数解法和某些特殊函数

下篇 数学物理方程
第九章 数学物理方程的定解问题
第十章 行波法和分离变量法 本征值问题
第十一章 积分变换法
第十二章 球坐标下的分离变量法 勒让德多项式和球谐函数
第十三章 柱坐标下的分离变量法 贝塞尔函数
第十四章 非齐次方程的定解问题和格林函数法
第十五章 变分法
第十立章 程分方程简介和非线性偏微分方程初步
习题答案
主要参考书目

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024

数学物理方法(第2版)/面向21世纪课程教材 下载 epub mobi pdf txt 电子书 2024

数学物理方法(第2版)/面向21世纪课程教材 pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

数学物理方法(第2版)/面向21世纪课程教材 mobi pdf epub txt 电子书 下载 2024

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达(L’Hospital,G.-F.-A. de)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange,J.-L.),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。

评分

评分

数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达(L’Hospital,G.-F.-A. de)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange,J.-L.),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。

评分

一本很好的教材,值得一读。

评分

经典教材,必备。印刷精美。好书值得拥有。

评分

还是本店的靠谱,不像3方店的垃圾

评分

经典。

评分

数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达(L’Hospital,G.-F.-A. de)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange,J.-L.),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。

评分

服务很给力,商品送的很及时

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

数学物理方法(第2版)/面向21世纪课程教材 epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.tinynews.org All Rights Reserved. 静思书屋 版权所有