人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf  mobi txt 电子书 下载

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025


简体网页||繁体网页
[美] 拉塞尔(Stuart J.Russell),[美] 诺维格(Peter Norvig) 著

下载链接在页面底部


点击这里下载
    


想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-10

商品介绍



出版社: 清华大学出版社
ISBN:9787302252955
版次:1
商品编码:10779582
品牌:清华大学
包装:平装
丛书名: 大学计算机教育国外著名教材系列
外文名称:Artificial Intelligence:A Modern Approach (3rd Edition)
开本:16开
出版时间:2011-07-01

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025



类似图书 点击查看全场最低价

相关书籍





书籍描述

产品特色

编辑推荐

  美国伯克利大学与Google人工智能科学家合作编写,全世界100多个国家1200多所大学使用
  Best computer science textbook ever。
  A Must Read for AI
  本书为英文影印版,对应翻译版:人工智能:一种现代的方法(第3版)(世界著名计算机教材精选)
  其他相关图书:
  Unity3D人工智能编程精粹
  人工智能(第2版)(十二五”普通高等教育本科国家级规划教材)

内容简介

  《大学计算机教育国外著名教材系列·人工智能:一种现代的方法(第3版)(影印版)》专业、经典的人工智能教材,已被全世界100多个国家的1200多所大学用作教材。《大学计算机教育国外著名教材系列·人工智能:一种现代的方法(第3版)(影印版)》的全新版全面而系统地介绍了人工智能的理论和实践,阐述了人工智能领域的核心内容,并深入介绍了各个主要的研究方向。全书仍分为八大部分:一部分“人工智能”,第二部分“问题求解”,第三部分“知识与推理”,第四部分“规划”,第五部分“不确定知识与推理”,第六部分“学习”,第七部分“通信、感知与行动”,第八部分“结论”。《大学计算机教育国外著名教材系列·人工智能:一种现代的方法(第3版)(影印版)》既详细介绍了人工智能的基本概念、思想和算法,还描述了其各个研究方向前沿的进展,同时收集整理了详实的历史文献与事件。另外,《大学计算机教育国外著名教材系列·人工智能:一种现代的方法(第3版)(影印版)》的配套网址为教师和学生提供了大量教学和学习资料。
  《大学计算机教育国外著名教材系列·人工智能:一种现代的方法(第3版)(影印版)》适合于不同层次和领域的研究人员及学生,是高等院校本科生和研究生人工智能课的优选教材,也是相关领域的科研与工程技术人员的重要参考书。

作者简介

  Stuart Russell,1962年生于英格兰的Portsmouth。他于1982年以一等成绩在牛津大学获得物理学学士学位,并于1986年在斯坦福大学获得计算机科学的博士学位。之后他进入加州大学伯克利分校,任计算机科学教授,智能系统中心主任,拥有Smith-Zadeh工程学讲座教授头衔。1990年他获得国家科学基金的“总统青年研究者奖”(Presidential Young Investigator Award),1995年他是“计算机与思维奖”(Computer and Thought Award)的获得者之一。1996年他是加州大学的Miller教授(Miller Professor),并于2000年被任命为首席讲座教授(Chancellor's Professorship)。1998年他在斯坦福大学做过Forsythe纪念演讲(Forsythe Memorial Lecture)。他是美国人工智能学会的会士和前执行委员会委员。他已经发表100多篇论文,主题广泛涉及人工智能领域。他的其他著作包括《在类比与归纳中使用知识》(The Use of Knowledge in Analogy abd Induction).以及(与Eric Wefald合著的)《做正确的事情:有限理性的研究》(Do the Right Thing: Studies in Limited Rationality)。

  Peter Norvig,现为Google研究院主管(Director of Research),2002-2005年为负责核心Web搜索算法的主管。他是美国人工智能学会的会士和ACM的会士。他曾经是NASAAmes研究中心计算科学部的主任,负责NASA在人工智能和机器人学领域的研究与开发,他作为Junglee的首席科学家帮助开发了一种zui早的互联网信息抽取服务。他在布朗( Brown)大学得应用数学学士学位,在加州大学伯克利分校获得计算机科学的博士学位。他获得了伯克利“卓越校友和工程创新奖”,从NASA获得了“非凡成就勋章”。他曾任南加州大学的教授,并是伯克利的研究员。他的其他著作包括《人工智能程序设计范型:通用Lisp语言的案例研究》(Paradigms of AI Programming: Case Studies in Common Lisp)和《Verbmobil:一个面对面对话的翻译系统》(Verbmobil:A Translation System for Face-to-FaceDialog),以及《UNIX的智能帮助系统》(lntelligent Help Systemsfor UNIX)。


目录

Ⅰ artificial intelligence
1 introduction
1.1what is al?
1.2the foundations of artificial intelligence
1.3the history of artificial intelligence
1.4the state of the art
1.5summary, bibliographical and historical notes, exercises
2 intelligent agents
2.1agents and environments
2.2good behavior: the concept of rationality
2.3the nature of environments
2.4the structure of agents
2.5summary, bibliographical and historical notes, exercises
Ⅱ problem-solving
3 solving problems by searching
3.1problem-solving agents
3.2example problems
3.3searching for solutions
3.4uninformed search strategies
3.5informed (heuristic) search strategies
3.6heuristic functions
3.7summary, bibliographical and historical notes, exercises
4 beyond classical search
4.1local search algorithms and optimization problems
4.2local search in continuous spaces
4.3searching with nondeterministic actions
4.4searching with partial observations
4.5online search agents and unknown environments
4.6summary, bibliographical and historical notes, exercises
5 adversarial search
5.1games
5.2optimal decisions in games
5.3alpha-beta pruning
5.4imperfect real-time decisions
5.5stochastic games
5.6partially observable games
5.7state-of-the-art game programs
5.8alternative approaches
5.9summary, bibliographical and historical notes, exercises
6 constraint satisfaction problems
6.1defining constraint satisfaction problems
6.2constraint propagation: inference in csps
6.3backtracking search for csps
6.4local search for csps
6.5the structure of problems
6.6summary, bibliographical and historical notes, exercises
Ⅲ knowledge, reasoning, and planning
7 logical agents
7.1knowledge-based agents
7.2the wumpus world
7.3logic
7.4propositional logic: a very simple logic
7.5propositional theorem proving
7.6effective propositional model checking
7.7agents based on propositional logic
7.8summary, bibliographical and historical notes, exercises
8 first-order logic
8.1representation revisited
8.2syntax and semantics of first-order logic
8.3using first-order logic
8.4knowledge engineering in first-order logic
8.5summary, bibliographical and historical notes, exercises
9 inference in first-order logic
9.1propositional vs. first-order inference
9.2unification and lifting
9.3forward chaining
9.4backward chaining
9.5resolution
9.6summary, bibliographical and historical notes, exercises
10 classical planning
10.1 definition of classical planning
10.2 algorithms for planning as state-space search
10.3 planning graphs
10.4 other classical planning approaches
10.5 analysis of planning approaches
10.6 summary, bibliographical and historical notes, exercises
11 planning and acting in the real world
11.1 time, schedules, and resources
11.2 hierarchical planning
11.3 planning and acting in nondeterministic domains
11.4 multiagent planning
11.5 summary, bibliographical and historical notes, exercises
12 knowledge representation
12.1 ontological engineering
12.2 categories and objects
12.3 events
12.4 mental events and mental objects
12.5 reasoning systems for categories
12.6 reasoning with default information
12.7 the intemet shopping world
12.8 summary, bibliographical and historical notes, exercises
Ⅳ uncertain knowledge and reasoning
13 quantifying uncertainty
13.1 acting under uncertainty
13.2 basic probability notation
13.3 inference using full joint distributions
13.4 independence
13.5 bayes' rule and its use
13.6 the wumpus world revisited
13.7 summary, bibliographical and historical notes, exercises
14 probabilistic reasoning
14.1 representing knowledge in an uncertain domain
14.2 the semantics of bayesian networks
14.3 efficient representation of conditional distributions
14.4 exact inference in bayesian networks
14.5 approximate inference in bayesian networks
14.6 relational and first-order probability models
14.7 other approaches to uncertain reasoning
14.8 summary, bibliographical and historical notes, exercises
15 probabilistic reasoning over time
15.1 time and uncertainty
15.2 inference in temporal models
15.3 hidden markov models
15.4 kalman filters
15.5 dynamic bayesian networks
15.6 keeping track of many objects
15.7 summary, bibliographical and historical notes, exercises
16 making simple decisions
16.1 combining beliefs and desires under uncertainty
16.2 the basis of utility theory
16.3 utility functions
16.4 multiattribute utility functions
16.5 decision networks
16.6 the value of information
16.7 decision-theoretic expert systems
16.8 summary, bibliographical and historical notes, exercises
17 making complex decisions
17.1 sequential decision problems
17.2 value iteration
17.3 policy iteration
17.4 partially observable mdps
17.5 decisions with multiple agents: game theory
17.6 mechanism design
17.7 summary, bibliographical and historical notes, exercises
V learning
18 learning from examples
18.1 forms of learning
18.2 supervised learning
18.3 leaming decision trees
18.4 evaluating and choosing the best hypothesis
18.5 the theory of learning
18.6 regression and classification with linear models
18.7 artificial neural networks
18.8 nonparametric models
18.9 support vector machines
18.10 ensemble learning
18.11 practical machine learning
18.12 summary, bibliographical and historical notes, exercises
19 knowledge in learning
19.1 a logical formulation of learning
19.2 knowledge in learning
19.3 explanation-based learning
19.4 learning using relevance information
19.5 inductive logic programming
19.6 summary, bibliographical and historical notes, exercis
20 learning probabilistic models
20.1 statistical learning
20.2 learning with complete data
20.3 learning with hidden variables: the em algorithm.
20.4 summary, bibliographical and historical notes, exercis
21 reinforcement learning
21. l introduction
21.2 passive reinforcement learning
21.3 active reinforcement learning
21.4 generalization in reinforcement learning
21.5 policy search
21.6 applications of reinforcement learning
21.7 summary, bibliographical and historical notes, exercis
VI communicating, perceiving, and acting
22 natural language processing
人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] 下载 epub mobi pdf txt 电子书 2025

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2025

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] mobi pdf epub txt 电子书 下载 2025

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

不错的商品哦!

评分

好厚,还没读完呢……

评分

4.针对这一问题咨询了客服,京东商城客服认为,白条券属于京东金融的问题,踢皮球提到京东金融,金融客服一查询认为我提的问题都是客观存在的,脑子又转的比较快,很快找出同款商品不同规格商品定价及其不合理京东商城客服需要解释,然后顺利把皮球踢给京东商城客服,转接之后京东客服也不敢接电话。截止目前电话依然是转接音。

评分

据说是最经典的一本人工智能书籍

评分

1.该券可以用的商品大多属于一些品牌商家的小样赠品,商家的商品介绍写的很清楚属于赠品,京东拿来卖,我不知道是否合法。

评分

物流很快,内容还没看,很期待。

评分

很好,该有的基本都有了,买来自学的,现在只看了个大概,等学好了再来评价。

评分

买错了,这是全英文

评分

内容挺好的,但是感觉还是不太全,很多功能都没讲

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025

类似图书 点击查看全场最低价

人工智能:一种现代的方法(第3版 影印版) [Artificial Intelligence:A Modern Approach (3rd Edition)] epub pdf mobi txt 电子书 下载 2025


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有